Manufacture and thermomechanical characterization of wet filament wound C/C‐SiC composites

The paper presents manufacture of C/C‐SiC composite materials by wet filament winding of C fibers with a water‐based phenolic resin with subsequent curing via autoclave as well as pyrolysis and liquid silicon infiltration (LSI). Almost dense C/C‐SiC composite materials with different winding angles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied ceramic technology 2022-01, Vol.19 (1), p.34-44
Hauptverfasser: Frieß, Martin, Böyükbas, Muhammed, Vogel, Felix, Cepli, Daniel, Schatz, Oliver, Süß, Fabia, Shi, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents manufacture of C/C‐SiC composite materials by wet filament winding of C fibers with a water‐based phenolic resin with subsequent curing via autoclave as well as pyrolysis and liquid silicon infiltration (LSI). Almost dense C/C‐SiC composite materials with different winding angles ranging from ±15° to ±75° could be obtained with porosities lower than 3% and densities in the range of 2 g/cm3. Thermomechanical characterization via tensile testing at room temperature and at 1300°C revealed higher tensile strength at elevated temperature than at room temperature. Thus, C/C‐SiC material obtained by wet filament winding and LSI‐processing has excellent high‐temperature strength for high‐temperature applications. Crack patterns during pyrolysis, microstructure after siliconization, and tensile strength strongly depend on the fiber/matrix interface strength and winding angle. Moreover, calculation tools for composites, such as classical laminate and inverse laminate theory, can be applied for structural evaluation and prediction of mechanical performance of C/C‐SiC structures.
ISSN:1546-542X
1744-7402
DOI:10.1111/ijac.13785