Faster Algorithms for \(k\)-Subset Sum and Variations
We present new, faster pseudopolynomial time algorithms for the \(k\)-Subset Sum problem, defined as follows: given a set \(Z\) of \(n\) positive integers and \(k\) targets \(t_1, \ldots, t_k\), determine whether there exist \(k\) disjoint subsets \(Z_1,\dots,Z_k \subseteq Z\), such that \(\Sigma(Z_...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present new, faster pseudopolynomial time algorithms for the \(k\)-Subset Sum problem, defined as follows: given a set \(Z\) of \(n\) positive integers and \(k\) targets \(t_1, \ldots, t_k\), determine whether there exist \(k\) disjoint subsets \(Z_1,\dots,Z_k \subseteq Z\), such that \(\Sigma(Z_i) = t_i\), for \(i = 1, \ldots, k\). Assuming \(t = \max \{ t_1, \ldots, t_k \}\) is the maximum among the given targets, a standard dynamic programming approach based on Bellman's algorithm [Bell57] can solve the problem in \(O(n t^k)\) time. We build upon recent advances on Subset Sum due to Koiliaris and Xu [Koil19] and Bringmann [Brin17] in order to provide faster algorithms for \(k\)-Subset Sum. We devise two algorithms: a deterministic one of time complexity \(\tilde{O}(n^{k / (k+1)} t^k)\) and a randomised one of \(\tilde{O}(n + t^k)\) complexity. Additionally, we show how these algorithms can be modified in order to incorporate cardinality constraints enforced on the solution subsets. We further demonstrate how these algorithms can be used in order to cope with variations of \(k\)-Subset Sum, namely Subset Sum Ratio, \(k\)-Subset Sum Ratio and Multiple Subset Sum. |
---|---|
ISSN: | 2331-8422 |