Intelligent Fault Detection and Identification Approach for Analog Electronic Circuits Based on Fuzzy Logic Classifier

Analog electronic circuits play an essential role in many industrial applications and control systems. The traditional way of diagnosing failures in such circuits can be an inaccurate and time-consuming process; therefore, it can affect the industrial outcome negatively. In this paper, an intelligen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-12, Vol.10 (23), p.2888
Hauptverfasser: Nasser, Ahmed R., Azar, Ahmad Taher, Humaidi, Amjad J., Al-Mhdawi, Ammar K., Ibraheem, Ibraheem Kasim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analog electronic circuits play an essential role in many industrial applications and control systems. The traditional way of diagnosing failures in such circuits can be an inaccurate and time-consuming process; therefore, it can affect the industrial outcome negatively. In this paper, an intelligent fault diagnosis and identification approach for analog electronic circuits is proposed and investigated. The proposed method relies on a simple statistical analysis approach of the frequency response of the analog circuit and a simple rule-based fuzzy logic classification model to detect and identify the faulty component in the circuit. The proposed approach is tested and evaluated using a commonly used low-pass filter circuit. The test result of the presented approach shows that it can identify the fault and detect the faulty component in the circuit with an average of 98% F-score accuracy. The proposed approach shows comparable performance to more intricate related works.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics10232888