A Sharp Bound for the Growth of Minimal Graphs

We consider minimal graphs u = u ( x , y ) > 0 over unbounded domains D ⊂ R 2 bounded by a Jordan arc γ on which u = 0 . We prove a sort of reverse Phragmén-Lindelöf theorem by showing that if D contains a sector S λ = { ( r , θ ) = { - λ / 2 < θ < λ / 2 } , π < λ ≤ 2 π , then the rate o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory 2021-12, Vol.21 (4), p.905-914
1. Verfasser: Weitsman, Allen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider minimal graphs u = u ( x , y ) > 0 over unbounded domains D ⊂ R 2 bounded by a Jordan arc γ on which u = 0 . We prove a sort of reverse Phragmén-Lindelöf theorem by showing that if D contains a sector S λ = { ( r , θ ) = { - λ / 2 < θ < λ / 2 } , π < λ ≤ 2 π , then the rate of growth is at most r π / λ .
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-021-00417-1