A Sharp Bound for the Growth of Minimal Graphs
We consider minimal graphs u = u ( x , y ) > 0 over unbounded domains D ⊂ R 2 bounded by a Jordan arc γ on which u = 0 . We prove a sort of reverse Phragmén-Lindelöf theorem by showing that if D contains a sector S λ = { ( r , θ ) = { - λ / 2 < θ < λ / 2 } , π < λ ≤ 2 π , then the rate o...
Gespeichert in:
Veröffentlicht in: | Computational methods and function theory 2021-12, Vol.21 (4), p.905-914 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider minimal graphs
u
=
u
(
x
,
y
)
>
0
over unbounded domains
D
⊂
R
2
bounded by a Jordan arc
γ
on which
u
=
0
. We prove a sort of reverse Phragmén-Lindelöf theorem by showing that if
D
contains a sector
S
λ
=
{
(
r
,
θ
)
=
{
-
λ
/
2
<
θ
<
λ
/
2
}
,
π
<
λ
≤
2
π
,
then the rate of growth is at most
r
π
/
λ
. |
---|---|
ISSN: | 1617-9447 2195-3724 |
DOI: | 10.1007/s40315-021-00417-1 |