A local curvature estimate for the Ricci-harmonic flow on complete Riemannian manifolds
In this paper we consider the local \(L^p\) estimate of Riemannian curvature for the Ricci-harmonic flow or List's flow introduced by List \cite{List2005} on complete noncompact manifolds. As an application, under the assumption that the flow exists on a finite time interval \([0,T)\) and the R...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider the local \(L^p\) estimate of Riemannian curvature for the Ricci-harmonic flow or List's flow introduced by List \cite{List2005} on complete noncompact manifolds. As an application, under the assumption that the flow exists on a finite time interval \([0,T)\) and the Ricci curvature is uniformly bounded, we prove that the \(L^p\) norm of Riemannian curvature is bounded, and then, applying the De Giorgi-Nash-Moser iteration method, obtain the local boundedness of Riemannian curvature and consequently the flow can be continuously extended past \(T\). |
---|---|
ISSN: | 2331-8422 |