Transformer-based Korean Pretrained Language Models: A Survey on Three Years of Progress

With the advent of Transformer, which was used in translation models in 2017, attention-based architectures began to attract attention. Furthermore, after the emergence of BERT, which strengthened the NLU-specific encoder part, which is a part of the Transformer, and the GPT architecture, which stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
1. Verfasser: Yang, Kichang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the advent of Transformer, which was used in translation models in 2017, attention-based architectures began to attract attention. Furthermore, after the emergence of BERT, which strengthened the NLU-specific encoder part, which is a part of the Transformer, and the GPT architecture, which strengthened the NLG-specific decoder part, various methodologies, data, and models for learning the Pretrained Language Model began to appear. Furthermore, in the past three years, various Pretrained Language Models specialized for Korean have appeared. In this paper, we intend to numerically and qualitatively compare and analyze various Korean PLMs released to the public.
ISSN:2331-8422