Radio Power from Direct-collapse Black Holes

Direct-collapse black holes (DCBHs) forming at z ∼ 20 are currently the leading candidates for the seeds of the first quasars, over 200 of which have now been found at z > 6. Recent studies suggest that DCBHs could be detected in the near-infrared by the James Webb Space Telescope, Euclid, and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2021-12, Vol.922 (2), p.L39
Hauptverfasser: Whalen, Daniel J., Mezcua, Mar, Patrick, Samuel J., Meiksin, Avery, Latif, Muhammad A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direct-collapse black holes (DCBHs) forming at z ∼ 20 are currently the leading candidates for the seeds of the first quasars, over 200 of which have now been found at z > 6. Recent studies suggest that DCBHs could be detected in the near-infrared by the James Webb Space Telescope, Euclid, and the Roman Space Telescope. However, new radio telescopes with unprecedented sensitivities such as the Square Kilometre Array (SKA) and the Next-Generation Very Large Array (ngVLA) may open another window on the properties of DCBHs in the coming decade. Here we estimate the radio flux from DCBHs at birth at z = 8–20 with several fundamental planes of black hole accretion. We find that they could be detected at z ∼ 8 by the SKA-FIN all-sky survey. Furthermore, SKA and ngVLA could discover 10 6 –10 7 M ⊙ BHs out to z ∼ 20, probing the formation pathways of the first quasars in the universe.
ISSN:2041-8205
2041-8213
DOI:10.3847/2041-8213/ac35e6