Uniformly positive entropy of induced transformations
Let $(X,T)$ be a topological dynamical system consisting of a compact metric space X and a continuous surjective map $T : X \to X$ . By using local entropy theory, we prove that $(X,T)$ has uniformly positive entropy if and only if so does the induced system $({\mathcal {M}}(X),\widetilde {T})$ on t...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2022-01, Vol.42 (1), p.9-18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$(X,T)$
be a topological dynamical system consisting of a compact metric space X and a continuous surjective map
$T : X \to X$
. By using local entropy theory, we prove that
$(X,T)$
has uniformly positive entropy if and only if so does the induced system
$({\mathcal {M}}(X),\widetilde {T})$
on the space of Borel probability measures endowed with the weak* topology. This result can be seen as a version for the notion of uniformly positive entropy of the corresponding result for topological entropy due to Glasner and Weiss. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2020.136 |