Uniformly positive entropy of induced transformations

Let $(X,T)$ be a topological dynamical system consisting of a compact metric space X and a continuous surjective map $T : X \to X$ . By using local entropy theory, we prove that $(X,T)$ has uniformly positive entropy if and only if so does the induced system $({\mathcal {M}}(X),\widetilde {T})$ on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2022-01, Vol.42 (1), p.9-18
Hauptverfasser: BERNARDES, NILSON C., DARJI, UDAYAN B., VERMERSCH, RÔMULO M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $(X,T)$ be a topological dynamical system consisting of a compact metric space X and a continuous surjective map $T : X \to X$ . By using local entropy theory, we prove that $(X,T)$ has uniformly positive entropy if and only if so does the induced system $({\mathcal {M}}(X),\widetilde {T})$ on the space of Borel probability measures endowed with the weak* topology. This result can be seen as a version for the notion of uniformly positive entropy of the corresponding result for topological entropy due to Glasner and Weiss.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2020.136