An Efficient Branch-and-Bound Algorithm for Globally Solving Minimax Linear Fractional Programming Problem

This paper presents an efficient outer space branch-and-bound algorithm for globally solving a minimax linear fractional programming problem (MLFP), which has a wide range of applications in data envelopment analysis, engineering optimization, management optimization, and so on. In this algorithm, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021, Vol.2021, p.1-10
Hauptverfasser: Jia, Pujun, Jiao, Hongwei, Shi, Dongwei, Yin, Jingben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an efficient outer space branch-and-bound algorithm for globally solving a minimax linear fractional programming problem (MLFP), which has a wide range of applications in data envelopment analysis, engineering optimization, management optimization, and so on. In this algorithm, by introducing auxiliary variables, we first equivalently transform the problem (MLFP) into the problem (EP). By using a new linear relaxation technique, the problem (EP) is reduced to a sequence of linear relaxation problems over the outer space rectangle, which provides the valid lower bound for the optimal value of the problem (EP). Based on the outer space branch-and-bound search and the linear relaxation problem, an outer space branch-and-bound algorithm is constructed for globally solving the problem (MLFP). In addition, the convergence and complexity of the presented algorithm are given. Finally, numerical experimental results demonstrate the feasibility and efficiency of the proposed algorithm.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/3584494