Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions

In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-12, Vol.106 (4), p.3469-3477
Hauptverfasser: Cardoso, W. B., Avelar, A. T., Bazeia, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3477
container_issue 4
container_start_page 3469
container_title Nonlinear dynamics
container_volume 106
creator Cardoso, W. B.
Avelar, A. T.
Bazeia, D.
description In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its seed and the interaction parameter, one can observe a disorder in the nonlinearity of the system. This disorder was varied by changing the parameter values and controlled via the Lyapunov exponent, however, always maintaining a fixed amplitude. We verified a direct relationship between the value of the Lyapunov coefficient and the formation of two-soliton bonded/unbonded states.
doi_str_mv 10.1007/s11071-021-06962-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2605772441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605772441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-abdf8b39324b4d39f9b6d51ed600983060ba4e990191fb46b60d8b6e1315e1cd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7GY3Ryn1AwpeFHoLyW5St2yTmqRI_73RFbx5GOYwz_sOPAhdU7ilAM1dohQaSoCVEVIw0pygGa0bTpiQ61M0A8kqAhLW5-gipS0AcAbtDK2XztkuJxwc7t51yEOH9zbmQzQ6D8GXg8ca--DHwVsdcTqmbHf44HsbN2HwG5w_A0lhHHIhuzCOQ_rOXaIzp8dkr373HL09LF8XT2T18vi8uF-RjlOZiTa9aw2XnFWm6rl00oi-prYXALLlIMDoykoJVFJnKmEE9K0RlnJaW9r1fI5upt59DB8Hm7LahkP05aViAuqmYVVFC8UmqoshpWid2sdhp-NRUVDfBtVkUBWD6segakqIT6FUYL-x8a_6n9QXuxx1Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605772441</pqid></control><display><type>article</type><title>Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cardoso, W. B. ; Avelar, A. T. ; Bazeia, D.</creator><creatorcontrib>Cardoso, W. B. ; Avelar, A. T. ; Bazeia, D.</creatorcontrib><description>In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its seed and the interaction parameter, one can observe a disorder in the nonlinearity of the system. This disorder was varied by changing the parameter values and controlled via the Lyapunov exponent, however, always maintaining a fixed amplitude. We verified a direct relationship between the value of the Lyapunov coefficient and the formation of two-soliton bonded/unbonded states.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06962-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Chaos theory ; Classical Mechanics ; Collisions ; Control ; Dynamical Systems ; Engineering ; Interaction parameters ; Liapunov exponents ; Mechanical Engineering ; Nonlinear systems ; Nonlinearity ; Original Paper ; Perturbation ; Schrodinger equation ; Solitary waves ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-12, Vol.106 (4), p.3469-3477</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-abdf8b39324b4d39f9b6d51ed600983060ba4e990191fb46b60d8b6e1315e1cd3</citedby><cites>FETCH-LOGICAL-c319t-abdf8b39324b4d39f9b6d51ed600983060ba4e990191fb46b60d8b6e1315e1cd3</cites><orcidid>0000-0003-1733-6937 ; 0000-0002-3192-392X ; 0000-0003-1335-3705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06962-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06962-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Cardoso, W. B.</creatorcontrib><creatorcontrib>Avelar, A. T.</creatorcontrib><creatorcontrib>Bazeia, D.</creatorcontrib><title>Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its seed and the interaction parameter, one can observe a disorder in the nonlinearity of the system. This disorder was varied by changing the parameter values and controlled via the Lyapunov exponent, however, always maintaining a fixed amplitude. We verified a direct relationship between the value of the Lyapunov coefficient and the formation of two-soliton bonded/unbonded states.</description><subject>Automotive Engineering</subject><subject>Chaos theory</subject><subject>Classical Mechanics</subject><subject>Collisions</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Interaction parameters</subject><subject>Liapunov exponents</subject><subject>Mechanical Engineering</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Perturbation</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7GY3Ryn1AwpeFHoLyW5St2yTmqRI_73RFbx5GOYwz_sOPAhdU7ilAM1dohQaSoCVEVIw0pygGa0bTpiQ61M0A8kqAhLW5-gipS0AcAbtDK2XztkuJxwc7t51yEOH9zbmQzQ6D8GXg8ca--DHwVsdcTqmbHf44HsbN2HwG5w_A0lhHHIhuzCOQ_rOXaIzp8dkr373HL09LF8XT2T18vi8uF-RjlOZiTa9aw2XnFWm6rl00oi-prYXALLlIMDoykoJVFJnKmEE9K0RlnJaW9r1fI5upt59DB8Hm7LahkP05aViAuqmYVVFC8UmqoshpWid2sdhp-NRUVDfBtVkUBWD6segakqIT6FUYL-x8a_6n9QXuxx1Fg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Cardoso, W. B.</creator><creator>Avelar, A. T.</creator><creator>Bazeia, D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1733-6937</orcidid><orcidid>https://orcid.org/0000-0002-3192-392X</orcidid><orcidid>https://orcid.org/0000-0003-1335-3705</orcidid></search><sort><creationdate>20211201</creationdate><title>Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions</title><author>Cardoso, W. B. ; Avelar, A. T. ; Bazeia, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-abdf8b39324b4d39f9b6d51ed600983060ba4e990191fb46b60d8b6e1315e1cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automotive Engineering</topic><topic>Chaos theory</topic><topic>Classical Mechanics</topic><topic>Collisions</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Interaction parameters</topic><topic>Liapunov exponents</topic><topic>Mechanical Engineering</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Perturbation</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardoso, W. B.</creatorcontrib><creatorcontrib>Avelar, A. T.</creatorcontrib><creatorcontrib>Bazeia, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardoso, W. B.</au><au>Avelar, A. T.</au><au>Bazeia, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>106</volume><issue>4</issue><spage>3469</spage><epage>3477</epage><pages>3469-3477</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its seed and the interaction parameter, one can observe a disorder in the nonlinearity of the system. This disorder was varied by changing the parameter values and controlled via the Lyapunov exponent, however, always maintaining a fixed amplitude. We verified a direct relationship between the value of the Lyapunov coefficient and the formation of two-soliton bonded/unbonded states.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06962-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1733-6937</orcidid><orcidid>https://orcid.org/0000-0002-3192-392X</orcidid><orcidid>https://orcid.org/0000-0003-1335-3705</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2021-12, Vol.106 (4), p.3469-3477
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2605772441
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Chaos theory
Classical Mechanics
Collisions
Control
Dynamical Systems
Engineering
Interaction parameters
Liapunov exponents
Mechanical Engineering
Nonlinear systems
Nonlinearity
Original Paper
Perturbation
Schrodinger equation
Solitary waves
Vibration
title Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20chaotic%20perturbations%20on%20a%20nonlinear%20system%20undergoing%20two-soliton%20collisions&rft.jtitle=Nonlinear%20dynamics&rft.au=Cardoso,%20W.%20B.&rft.date=2021-12-01&rft.volume=106&rft.issue=4&rft.spage=3469&rft.epage=3477&rft.pages=3469-3477&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06962-7&rft_dat=%3Cproquest_cross%3E2605772441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605772441&rft_id=info:pmid/&rfr_iscdi=true