Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions
In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its se...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2021-12, Vol.106 (4), p.3469-3477 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3477 |
---|---|
container_issue | 4 |
container_start_page | 3469 |
container_title | Nonlinear dynamics |
container_volume | 106 |
creator | Cardoso, W. B. Avelar, A. T. Bazeia, D. |
description | In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its seed and the interaction parameter, one can observe a disorder in the nonlinearity of the system. This disorder was varied by changing the parameter values and controlled via the Lyapunov exponent, however, always maintaining a fixed amplitude. We verified a direct relationship between the value of the Lyapunov coefficient and the formation of two-soliton bonded/unbonded states. |
doi_str_mv | 10.1007/s11071-021-06962-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2605772441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605772441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-abdf8b39324b4d39f9b6d51ed600983060ba4e990191fb46b60d8b6e1315e1cd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7GY3Ryn1AwpeFHoLyW5St2yTmqRI_73RFbx5GOYwz_sOPAhdU7ilAM1dohQaSoCVEVIw0pygGa0bTpiQ61M0A8kqAhLW5-gipS0AcAbtDK2XztkuJxwc7t51yEOH9zbmQzQ6D8GXg8ca--DHwVsdcTqmbHf44HsbN2HwG5w_A0lhHHIhuzCOQ_rOXaIzp8dkr373HL09LF8XT2T18vi8uF-RjlOZiTa9aw2XnFWm6rl00oi-prYXALLlIMDoykoJVFJnKmEE9K0RlnJaW9r1fI5upt59DB8Hm7LahkP05aViAuqmYVVFC8UmqoshpWid2sdhp-NRUVDfBtVkUBWD6segakqIT6FUYL-x8a_6n9QXuxx1Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605772441</pqid></control><display><type>article</type><title>Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cardoso, W. B. ; Avelar, A. T. ; Bazeia, D.</creator><creatorcontrib>Cardoso, W. B. ; Avelar, A. T. ; Bazeia, D.</creatorcontrib><description>In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its seed and the interaction parameter, one can observe a disorder in the nonlinearity of the system. This disorder was varied by changing the parameter values and controlled via the Lyapunov exponent, however, always maintaining a fixed amplitude. We verified a direct relationship between the value of the Lyapunov coefficient and the formation of two-soliton bonded/unbonded states.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06962-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Chaos theory ; Classical Mechanics ; Collisions ; Control ; Dynamical Systems ; Engineering ; Interaction parameters ; Liapunov exponents ; Mechanical Engineering ; Nonlinear systems ; Nonlinearity ; Original Paper ; Perturbation ; Schrodinger equation ; Solitary waves ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-12, Vol.106 (4), p.3469-3477</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-abdf8b39324b4d39f9b6d51ed600983060ba4e990191fb46b60d8b6e1315e1cd3</citedby><cites>FETCH-LOGICAL-c319t-abdf8b39324b4d39f9b6d51ed600983060ba4e990191fb46b60d8b6e1315e1cd3</cites><orcidid>0000-0003-1733-6937 ; 0000-0002-3192-392X ; 0000-0003-1335-3705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06962-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06962-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Cardoso, W. B.</creatorcontrib><creatorcontrib>Avelar, A. T.</creatorcontrib><creatorcontrib>Bazeia, D.</creatorcontrib><title>Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its seed and the interaction parameter, one can observe a disorder in the nonlinearity of the system. This disorder was varied by changing the parameter values and controlled via the Lyapunov exponent, however, always maintaining a fixed amplitude. We verified a direct relationship between the value of the Lyapunov coefficient and the formation of two-soliton bonded/unbonded states.</description><subject>Automotive Engineering</subject><subject>Chaos theory</subject><subject>Classical Mechanics</subject><subject>Collisions</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Interaction parameters</subject><subject>Liapunov exponents</subject><subject>Mechanical Engineering</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Perturbation</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7GY3Ryn1AwpeFHoLyW5St2yTmqRI_73RFbx5GOYwz_sOPAhdU7ilAM1dohQaSoCVEVIw0pygGa0bTpiQ61M0A8kqAhLW5-gipS0AcAbtDK2XztkuJxwc7t51yEOH9zbmQzQ6D8GXg8ca--DHwVsdcTqmbHf44HsbN2HwG5w_A0lhHHIhuzCOQ_rOXaIzp8dkr373HL09LF8XT2T18vi8uF-RjlOZiTa9aw2XnFWm6rl00oi-prYXALLlIMDoykoJVFJnKmEE9K0RlnJaW9r1fI5upt59DB8Hm7LahkP05aViAuqmYVVFC8UmqoshpWid2sdhp-NRUVDfBtVkUBWD6segakqIT6FUYL-x8a_6n9QXuxx1Fg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Cardoso, W. B.</creator><creator>Avelar, A. T.</creator><creator>Bazeia, D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1733-6937</orcidid><orcidid>https://orcid.org/0000-0002-3192-392X</orcidid><orcidid>https://orcid.org/0000-0003-1335-3705</orcidid></search><sort><creationdate>20211201</creationdate><title>Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions</title><author>Cardoso, W. B. ; Avelar, A. T. ; Bazeia, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-abdf8b39324b4d39f9b6d51ed600983060ba4e990191fb46b60d8b6e1315e1cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automotive Engineering</topic><topic>Chaos theory</topic><topic>Classical Mechanics</topic><topic>Collisions</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Interaction parameters</topic><topic>Liapunov exponents</topic><topic>Mechanical Engineering</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Perturbation</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardoso, W. B.</creatorcontrib><creatorcontrib>Avelar, A. T.</creatorcontrib><creatorcontrib>Bazeia, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardoso, W. B.</au><au>Avelar, A. T.</au><au>Bazeia, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>106</volume><issue>4</issue><spage>3469</spage><epage>3477</epage><pages>3469-3477</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its seed and the interaction parameter, one can observe a disorder in the nonlinearity of the system. This disorder was varied by changing the parameter values and controlled via the Lyapunov exponent, however, always maintaining a fixed amplitude. We verified a direct relationship between the value of the Lyapunov coefficient and the formation of two-soliton bonded/unbonded states.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06962-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1733-6937</orcidid><orcidid>https://orcid.org/0000-0002-3192-392X</orcidid><orcidid>https://orcid.org/0000-0003-1335-3705</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2021-12, Vol.106 (4), p.3469-3477 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2605772441 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Chaos theory Classical Mechanics Collisions Control Dynamical Systems Engineering Interaction parameters Liapunov exponents Mechanical Engineering Nonlinear systems Nonlinearity Original Paper Perturbation Schrodinger equation Solitary waves Vibration |
title | Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20chaotic%20perturbations%20on%20a%20nonlinear%20system%20undergoing%20two-soliton%20collisions&rft.jtitle=Nonlinear%20dynamics&rft.au=Cardoso,%20W.%20B.&rft.date=2021-12-01&rft.volume=106&rft.issue=4&rft.spage=3469&rft.epage=3477&rft.pages=3469-3477&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06962-7&rft_dat=%3Cproquest_cross%3E2605772441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605772441&rft_id=info:pmid/&rfr_iscdi=true |