Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions

In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-12, Vol.106 (4), p.3469-3477
Hauptverfasser: Cardoso, W. B., Avelar, A. T., Bazeia, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its seed and the interaction parameter, one can observe a disorder in the nonlinearity of the system. This disorder was varied by changing the parameter values and controlled via the Lyapunov exponent, however, always maintaining a fixed amplitude. We verified a direct relationship between the value of the Lyapunov coefficient and the formation of two-soliton bonded/unbonded states.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-021-06962-7