List-Based OMP and an Enhanced Model for DOA Estimation With Nonuniform Arrays

This article proposes an enhanced coarray transformation model (EDCTM) and a mixed greedy maximum likelihood algorithm called list-based maximum likelihood orthogonal matching pursuit (LBML-OMP) for direction-of-arrival estimation with nonuniform linear arrays (NLAs). The proposed EDCTM approach obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2021-12, Vol.57 (6), p.4457-4464
Hauptverfasser: Leite, Wesley S., Lamare, Rodrigo C. de
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes an enhanced coarray transformation model (EDCTM) and a mixed greedy maximum likelihood algorithm called list-based maximum likelihood orthogonal matching pursuit (LBML-OMP) for direction-of-arrival estimation with nonuniform linear arrays (NLAs). The proposed EDCTM approach obtains improved estimates when Khatri-Rao product-based models are used to generate difference coarrays under the assumption of uncorrelated sources. In the proposed LBML-OMP technique, for each iteration a set of candidates is generated based on the correlation-maximization between the dictionary and the residue vector. LBML-OMP then chooses the best candidate based on a reduced-complexity asymptotic maximum likelihood decision rule. Simulations show the improved results of EDCTM over existing approaches and that LBML-OMP outperforms existing sparse recovery algorithms as well as spatial smoothing multiple signal classification with NLAs.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2021.3087836