Maps That Are Continuously Differentiable in the Michal and Bastiani Sense But Not in the Fréchet Sense
We construct examples of nonlinear maps on function spaces which are continuously differentiable in the sense of Michal and Bastiani but not in the sense of Fréchet. The search for such examples is motivated by studies of delay differential equations with the delay variable and not necessarily bound...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-12, Vol.259 (6), p.761-774 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct examples of nonlinear maps on function spaces which are continuously differentiable in the sense of Michal and Bastiani but not in the sense of Fréchet. The search for such examples is motivated by studies of delay differential equations with the delay variable and not necessarily bounded. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-021-05660-4 |