Maps That Are Continuously Differentiable in the Michal and Bastiani Sense But Not in the Fréchet Sense

We construct examples of nonlinear maps on function spaces which are continuously differentiable in the sense of Michal and Bastiani but not in the sense of Fréchet. The search for such examples is motivated by studies of delay differential equations with the delay variable and not necessarily bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-12, Vol.259 (6), p.761-774
1. Verfasser: Walther, H.-O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct examples of nonlinear maps on function spaces which are continuously differentiable in the sense of Michal and Bastiani but not in the sense of Fréchet. The search for such examples is motivated by studies of delay differential equations with the delay variable and not necessarily bounded.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-021-05660-4