The Effect of People Recommenders on Echo Chambers and Polarization

The effects of social media on critical issues, such as polarization and misinformation, are under scrutiny due to the disruptive consequences that these phenomena can have on our societies. Among the algorithms routinely used by social media platforms, people-recommender systems are of special inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-12
Hauptverfasser: Cinus, Federico, Minici, Marco, Monti, Corrado, Bonchi, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of social media on critical issues, such as polarization and misinformation, are under scrutiny due to the disruptive consequences that these phenomena can have on our societies. Among the algorithms routinely used by social media platforms, people-recommender systems are of special interest, as they directly contribute to the evolution of the social network structure, affecting the information and the opinions users are exposed to. In this paper, we propose a framework to assess the effect of people recommenders on the evolution of opinions. Our proposal is based on Monte Carlo simulations combining link recommendation and opinion-dynamics models. In order to control initial conditions, we define a random network model to generate graphs with opinions, with tunable amounts of modularity and homophily. We join these elements into a methodology to study the effects of the recommender system on echo chambers and polarization. We also show how to use our framework to measure, by means of simulations, the impact of different intervention strategies. Our thorough experimentation shows that people recommenders can in fact lead to a significant increase in echo chambers. However, this happens only if there is considerable initial homophily in the network. Also, we find that if the network already contains echo chambers, the effect of the recommendation algorithm is negligible. Such findings are robust to two very different opinion dynamics models, a bounded confidence model and an epistemological model.
ISSN:2331-8422