Development of Photofunctional Devices Based on Organic–Inorganic Hybrid Structures

In this research, organic–inorganic hybrid materials that enable the detection and manipulation of “invisible light” such as weak light, polarized light, and near-infrared (NIR) light are prepared and optoelectronic devices based on these materials are developed. The photoelectric conversion or ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki kagaku oyobi kōgyō butsuri kagaku 2021/11/05, Vol.89(6), pp.544-551
1. Verfasser: ISHII, Ayumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research, organic–inorganic hybrid materials that enable the detection and manipulation of “invisible light” such as weak light, polarized light, and near-infrared (NIR) light are prepared and optoelectronic devices based on these materials are developed. The photoelectric conversion or energy transfer process resulting from light absorption is precisely controlled at the heterointerface of organic–inorganic hybrid structures, which enables the highly efficient amplification, conversion, and detection of invisible light under normal temperatures and pressures. Here, novel optical functions and devices based on organic–inorganic hybrid structures and interfaces are presented. For instance, in a hybrid structure in which organic molecules and inorganic semiconductors are chemically bonded, photocurrent was amplified more than 2000-fold at their heterointerface, resulting in highly sensitive photodetection at a low voltage (
ISSN:1344-3542
2186-2451
DOI:10.5796/electrochemistry.21-00090