LiBr-coated Air Electrodes for Li-air Batteries
Li–air batteries (LAB) have a theoretical energy density as high as 3500 Wh kg−1; however, many problems remain to be addressed before their practical application. Introduction of a redox mediator (RM) is commonly applied to reduce the high overpotential of the air electrode (AE) during the charge p...
Gespeichert in:
Veröffentlicht in: | Denki kagaku oyobi kōgyō butsuri kagaku 2021/11/05, Vol.89(6), pp.557-561 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 561 |
---|---|
container_issue | 6 |
container_start_page | 557 |
container_title | Denki kagaku oyobi kōgyō butsuri kagaku |
container_volume | 89 |
creator | HAYASHI, Yoshiya HONDA, Reo MORO, Itsuki FUKUNISHI, Mika OTSUKA, Hiromi KUBO, Yoshimi HORIBA, Tatsuo SAITO, Morihiro |
description | Li–air batteries (LAB) have a theoretical energy density as high as 3500 Wh kg−1; however, many problems remain to be addressed before their practical application. Introduction of a redox mediator (RM) is commonly applied to reduce the high overpotential of the air electrode (AE) during the charge process. We try to fix an RM on the AE by coating it with a slurry of carbon black and binder on a carbon paper substrate to enable us not only to suppress the shuttle effect but also to concentrate the RM on the surface of the AE where it works. We use LiBr as the RM in this study and compare two types of LAB cells: one with a LiBr-coated AE and the other with LiBr dissolved in the electrolyte solution. The cell with the LiBr-coated AE exhibits a better cell performance than that with the dissolved LiBr. |
doi_str_mv | 10.5796/electrochemistry.21-00096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2605284257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a514970a5b394aadb9a830217b24f5da</doaj_id><sourcerecordid>2605284257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-e663689af2c72ff2607897d4995748bfd284826e77da8d2cda457cc71a3370873</originalsourceid><addsrcrecordid>eNplkEtLQzEQhYMoWKr_oeI6mvdjaYuPQqEbXYdpHnpL22gSF_57b3u1C93MwHDON4eD0BUlN1JbdRs30beS_VvcdrWVrxtGMSHEqhM0YtQozISkp2hEuRCYS8HO0WWt615Ce5FldoRuF920YJ-hxTC568rkfmCGWCcpl8miw9Bfp9BaLF2sF-gswabGy589Ri8P98-zJ7xYPs5ndwvsFaENR6W4MhYS85qlxBTRxuogrJVamFUKzAjDVNQ6gAnMBxBSe68pcK6J0XyM5gM3ZFi799JtoXy5DJ07HHJ5dVBa5zfRgaTCagJyxa0ACCsLhhNG9YqJJAP0rOuB9V7yx2esza3zZ9n18V0fTPZRmNx_tIPKl1xrien4lRK3r9v9rdsx6g51997l4F3XBq_x6PyN-M9prFP78Us4Kv0bFBd3_BvTppMk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605284257</pqid></control><display><type>article</type><title>LiBr-coated Air Electrodes for Li-air Batteries</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>HAYASHI, Yoshiya ; HONDA, Reo ; MORO, Itsuki ; FUKUNISHI, Mika ; OTSUKA, Hiromi ; KUBO, Yoshimi ; HORIBA, Tatsuo ; SAITO, Morihiro</creator><creatorcontrib>HAYASHI, Yoshiya ; HONDA, Reo ; MORO, Itsuki ; FUKUNISHI, Mika ; OTSUKA, Hiromi ; KUBO, Yoshimi ; HORIBA, Tatsuo ; SAITO, Morihiro</creatorcontrib><description>Li–air batteries (LAB) have a theoretical energy density as high as 3500 Wh kg−1; however, many problems remain to be addressed before their practical application. Introduction of a redox mediator (RM) is commonly applied to reduce the high overpotential of the air electrode (AE) during the charge process. We try to fix an RM on the AE by coating it with a slurry of carbon black and binder on a carbon paper substrate to enable us not only to suppress the shuttle effect but also to concentrate the RM on the surface of the AE where it works. We use LiBr as the RM in this study and compare two types of LAB cells: one with a LiBr-coated AE and the other with LiBr dissolved in the electrolyte solution. The cell with the LiBr-coated AE exhibits a better cell performance than that with the dissolved LiBr.</description><identifier>ISSN: 1344-3542</identifier><identifier>EISSN: 2186-2451</identifier><identifier>DOI: 10.5796/electrochemistry.21-00096</identifier><language>eng</language><publisher>Tokyo: The Electrochemical Society of Japan</publisher><subject>Batteries ; Black carbon ; Carbon ; Carbon black ; Charge Overpotential ; Coated electrodes ; Coatings ; Electrodes ; Electrolytic cells ; Flux density ; Li-air Batteries ; LiBr ; Metal air batteries ; Redox Mediator ; Slurries ; Substrates</subject><ispartof>Electrochemistry, 2021/11/05, Vol.89(6), pp.557-561</ispartof><rights>The Author(s) 2021. Published by ECSJ.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-e663689af2c72ff2607897d4995748bfd284826e77da8d2cda457cc71a3370873</citedby><cites>FETCH-LOGICAL-c601t-e663689af2c72ff2607897d4995748bfd284826e77da8d2cda457cc71a3370873</cites><orcidid>0000-0002-7709-5306 ; 0000-0001-7062-8336 ; 0000-0001-6774-0263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,1877,27905,27906</link.rule.ids></links><search><creatorcontrib>HAYASHI, Yoshiya</creatorcontrib><creatorcontrib>HONDA, Reo</creatorcontrib><creatorcontrib>MORO, Itsuki</creatorcontrib><creatorcontrib>FUKUNISHI, Mika</creatorcontrib><creatorcontrib>OTSUKA, Hiromi</creatorcontrib><creatorcontrib>KUBO, Yoshimi</creatorcontrib><creatorcontrib>HORIBA, Tatsuo</creatorcontrib><creatorcontrib>SAITO, Morihiro</creatorcontrib><title>LiBr-coated Air Electrodes for Li-air Batteries</title><title>Denki kagaku oyobi kōgyō butsuri kagaku</title><addtitle>Electrochemistry</addtitle><description>Li–air batteries (LAB) have a theoretical energy density as high as 3500 Wh kg−1; however, many problems remain to be addressed before their practical application. Introduction of a redox mediator (RM) is commonly applied to reduce the high overpotential of the air electrode (AE) during the charge process. We try to fix an RM on the AE by coating it with a slurry of carbon black and binder on a carbon paper substrate to enable us not only to suppress the shuttle effect but also to concentrate the RM on the surface of the AE where it works. We use LiBr as the RM in this study and compare two types of LAB cells: one with a LiBr-coated AE and the other with LiBr dissolved in the electrolyte solution. The cell with the LiBr-coated AE exhibits a better cell performance than that with the dissolved LiBr.</description><subject>Batteries</subject><subject>Black carbon</subject><subject>Carbon</subject><subject>Carbon black</subject><subject>Charge Overpotential</subject><subject>Coated electrodes</subject><subject>Coatings</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Flux density</subject><subject>Li-air Batteries</subject><subject>LiBr</subject><subject>Metal air batteries</subject><subject>Redox Mediator</subject><subject>Slurries</subject><subject>Substrates</subject><issn>1344-3542</issn><issn>2186-2451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkEtLQzEQhYMoWKr_oeI6mvdjaYuPQqEbXYdpHnpL22gSF_57b3u1C93MwHDON4eD0BUlN1JbdRs30beS_VvcdrWVrxtGMSHEqhM0YtQozISkp2hEuRCYS8HO0WWt615Ce5FldoRuF920YJ-hxTC568rkfmCGWCcpl8miw9Bfp9BaLF2sF-gswabGy589Ri8P98-zJ7xYPs5ndwvsFaENR6W4MhYS85qlxBTRxuogrJVamFUKzAjDVNQ6gAnMBxBSe68pcK6J0XyM5gM3ZFi799JtoXy5DJ07HHJ5dVBa5zfRgaTCagJyxa0ACCsLhhNG9YqJJAP0rOuB9V7yx2esza3zZ9n18V0fTPZRmNx_tIPKl1xrien4lRK3r9v9rdsx6g51997l4F3XBq_x6PyN-M9prFP78Us4Kv0bFBd3_BvTppMk</recordid><startdate>20211105</startdate><enddate>20211105</enddate><creator>HAYASHI, Yoshiya</creator><creator>HONDA, Reo</creator><creator>MORO, Itsuki</creator><creator>FUKUNISHI, Mika</creator><creator>OTSUKA, Hiromi</creator><creator>KUBO, Yoshimi</creator><creator>HORIBA, Tatsuo</creator><creator>SAITO, Morihiro</creator><general>The Electrochemical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7709-5306</orcidid><orcidid>https://orcid.org/0000-0001-7062-8336</orcidid><orcidid>https://orcid.org/0000-0001-6774-0263</orcidid></search><sort><creationdate>20211105</creationdate><title>LiBr-coated Air Electrodes for Li-air Batteries</title><author>HAYASHI, Yoshiya ; HONDA, Reo ; MORO, Itsuki ; FUKUNISHI, Mika ; OTSUKA, Hiromi ; KUBO, Yoshimi ; HORIBA, Tatsuo ; SAITO, Morihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-e663689af2c72ff2607897d4995748bfd284826e77da8d2cda457cc71a3370873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Black carbon</topic><topic>Carbon</topic><topic>Carbon black</topic><topic>Charge Overpotential</topic><topic>Coated electrodes</topic><topic>Coatings</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Flux density</topic><topic>Li-air Batteries</topic><topic>LiBr</topic><topic>Metal air batteries</topic><topic>Redox Mediator</topic><topic>Slurries</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAYASHI, Yoshiya</creatorcontrib><creatorcontrib>HONDA, Reo</creatorcontrib><creatorcontrib>MORO, Itsuki</creatorcontrib><creatorcontrib>FUKUNISHI, Mika</creatorcontrib><creatorcontrib>OTSUKA, Hiromi</creatorcontrib><creatorcontrib>KUBO, Yoshimi</creatorcontrib><creatorcontrib>HORIBA, Tatsuo</creatorcontrib><creatorcontrib>SAITO, Morihiro</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAYASHI, Yoshiya</au><au>HONDA, Reo</au><au>MORO, Itsuki</au><au>FUKUNISHI, Mika</au><au>OTSUKA, Hiromi</au><au>KUBO, Yoshimi</au><au>HORIBA, Tatsuo</au><au>SAITO, Morihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LiBr-coated Air Electrodes for Li-air Batteries</atitle><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle><addtitle>Electrochemistry</addtitle><date>2021-11-05</date><risdate>2021</risdate><volume>89</volume><issue>6</issue><spage>557</spage><epage>561</epage><pages>557-561</pages><artnum>21-00096</artnum><issn>1344-3542</issn><eissn>2186-2451</eissn><abstract>Li–air batteries (LAB) have a theoretical energy density as high as 3500 Wh kg−1; however, many problems remain to be addressed before their practical application. Introduction of a redox mediator (RM) is commonly applied to reduce the high overpotential of the air electrode (AE) during the charge process. We try to fix an RM on the AE by coating it with a slurry of carbon black and binder on a carbon paper substrate to enable us not only to suppress the shuttle effect but also to concentrate the RM on the surface of the AE where it works. We use LiBr as the RM in this study and compare two types of LAB cells: one with a LiBr-coated AE and the other with LiBr dissolved in the electrolyte solution. The cell with the LiBr-coated AE exhibits a better cell performance than that with the dissolved LiBr.</abstract><cop>Tokyo</cop><pub>The Electrochemical Society of Japan</pub><doi>10.5796/electrochemistry.21-00096</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7709-5306</orcidid><orcidid>https://orcid.org/0000-0001-7062-8336</orcidid><orcidid>https://orcid.org/0000-0001-6774-0263</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1344-3542 |
ispartof | Electrochemistry, 2021/11/05, Vol.89(6), pp.557-561 |
issn | 1344-3542 2186-2451 |
language | eng |
recordid | cdi_proquest_journals_2605284257 |
source | J-STAGE Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Batteries Black carbon Carbon Carbon black Charge Overpotential Coated electrodes Coatings Electrodes Electrolytic cells Flux density Li-air Batteries LiBr Metal air batteries Redox Mediator Slurries Substrates |
title | LiBr-coated Air Electrodes for Li-air Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LiBr-coated%20Air%20Electrodes%20for%20Li-air%20Batteries&rft.jtitle=Denki%20kagaku%20oyobi%20k%C5%8Dgy%C5%8D%20butsuri%20kagaku&rft.au=HAYASHI,%20Yoshiya&rft.date=2021-11-05&rft.volume=89&rft.issue=6&rft.spage=557&rft.epage=561&rft.pages=557-561&rft.artnum=21-00096&rft.issn=1344-3542&rft.eissn=2186-2451&rft_id=info:doi/10.5796/electrochemistry.21-00096&rft_dat=%3Cproquest_doaj_%3E2605284257%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605284257&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a514970a5b394aadb9a830217b24f5da&rfr_iscdi=true |