LiBr-coated Air Electrodes for Li-air Batteries

Li–air batteries (LAB) have a theoretical energy density as high as 3500 Wh kg−1; however, many problems remain to be addressed before their practical application. Introduction of a redox mediator (RM) is commonly applied to reduce the high overpotential of the air electrode (AE) during the charge p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki kagaku oyobi kōgyō butsuri kagaku 2021/11/05, Vol.89(6), pp.557-561
Hauptverfasser: HAYASHI, Yoshiya, HONDA, Reo, MORO, Itsuki, FUKUNISHI, Mika, OTSUKA, Hiromi, KUBO, Yoshimi, HORIBA, Tatsuo, SAITO, Morihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Li–air batteries (LAB) have a theoretical energy density as high as 3500 Wh kg−1; however, many problems remain to be addressed before their practical application. Introduction of a redox mediator (RM) is commonly applied to reduce the high overpotential of the air electrode (AE) during the charge process. We try to fix an RM on the AE by coating it with a slurry of carbon black and binder on a carbon paper substrate to enable us not only to suppress the shuttle effect but also to concentrate the RM on the surface of the AE where it works. We use LiBr as the RM in this study and compare two types of LAB cells: one with a LiBr-coated AE and the other with LiBr dissolved in the electrolyte solution. The cell with the LiBr-coated AE exhibits a better cell performance than that with the dissolved LiBr.
ISSN:1344-3542
2186-2451
DOI:10.5796/electrochemistry.21-00096