Fractional Kirchhoff–Choquard equation involving Schrödinger term and upper critical exponent
In this paper, we consider fractional degenerate and non-degenerate Kirchhoff type Schrödinger–Choquard problems with upper critical exponent, respectively. By studying the solutions of limit problems for above problems and establishing some local and global compactness results, we provide some suff...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2022, Vol.32 (1), Article 5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider fractional degenerate and non-degenerate Kirchhoff type Schrödinger–Choquard problems with upper critical exponent, respectively. By studying the solutions of limit problems for above problems and establishing some local and global compactness results, we provide some sufficient conditions under which above problems have at least one or two bounded state solutions. Our main tools adopted in our proof are splitting theorem and linking theorem. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-021-00747-5 |