Derivations on the Module Extension Banach Algebras

We correct some results presented in [M. Eshaghi Gordji, F. Habibian, and A. Rejali, Int. J. Contemp. Math. Sci. , 2, No. 5, 213 (2007)]. By using the obtained consequences, we establish necessary and sufficient conditions for the module extension A ⨁ X to be ( I ⨁ Y )-weakly amenable, where I is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2021-09, Vol.73 (4), p.661-673
Hauptverfasser: Teymouri, A., Bodaghi, A., Bagha, D. Ebrahimi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We correct some results presented in [M. Eshaghi Gordji, F. Habibian, and A. Rejali, Int. J. Contemp. Math. Sci. , 2, No. 5, 213 (2007)]. By using the obtained consequences, we establish necessary and sufficient conditions for the module extension A ⨁ X to be ( I ⨁ Y )-weakly amenable, where I is a closed ideal of the Banach algebra A and Y is a closed A -submodule of the Banach A -bimodule X. We apply this result to the module extension A ⨁ ( X 1 u X 2 ) , where X 1 and X 2 are two Banach A -bimodules.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-021-01950-x