Derivations on the Module Extension Banach Algebras
We correct some results presented in [M. Eshaghi Gordji, F. Habibian, and A. Rejali, Int. J. Contemp. Math. Sci. , 2, No. 5, 213 (2007)]. By using the obtained consequences, we establish necessary and sufficient conditions for the module extension A ⨁ X to be ( I ⨁ Y )-weakly amenable, where I is a...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2021-09, Vol.73 (4), p.661-673 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We correct some results presented in [M. Eshaghi Gordji, F. Habibian, and A. Rejali,
Int. J. Contemp. Math. Sci.
, 2, No. 5, 213 (2007)]. By using the obtained consequences, we establish necessary and sufficient conditions for the module extension
A
⨁
X
to be (
I
⨁
Y
)-weakly amenable, where
I
is a closed ideal of the Banach algebra
A
and
Y
is a closed
A
-submodule of the Banach
A
-bimodule
X.
We apply this result to the module extension
A
⨁ (
X
1
u
X
2
)
,
where
X
1
and
X
2
are two Banach
A
-bimodules. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-021-01950-x |