Generative Adversarial Networks with Conditional Neural Movement Primitives for An Interactive Generative Drawing Tool

Sketches are abstract representations of visual perception and visuospatial construction. In this work, we proposed a new framework, Generative Adversarial Networks with Conditional Neural Movement Primitives (GAN-CNMP), that incorporates a novel adversarial loss on CNMP to increase sketch smoothnes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-12
Hauptverfasser: Suzan Ece Ada, M Yunus Seker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sketches are abstract representations of visual perception and visuospatial construction. In this work, we proposed a new framework, Generative Adversarial Networks with Conditional Neural Movement Primitives (GAN-CNMP), that incorporates a novel adversarial loss on CNMP to increase sketch smoothness and consistency. Through the experiments, we show that our model can be trained with few unlabeled samples, can construct distributions automatically in the latent space, and produces better results than the base model in terms of shape consistency and smoothness.
ISSN:2331-8422