Stability of Equivariant Logarithmic Tangent Sheaves on Toric Varieties of Picard Rank Two

For an equivariant log pair \((X, D)\) where \(X\) is a normal toric variety and \(D\) a reduced Weil divisor, we study slope-stability of the logarithmic tangent sheaf \(\mathcal{T}_{X}(- \log D)\). We give a complete description of divisors \(D\) and polarizations \(L\) such that \(\mathcal{T}_{X}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
1. Verfasser: Napame, Achim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an equivariant log pair \((X, D)\) where \(X\) is a normal toric variety and \(D\) a reduced Weil divisor, we study slope-stability of the logarithmic tangent sheaf \(\mathcal{T}_{X}(- \log D)\). We give a complete description of divisors \(D\) and polarizations \(L\) such that \(\mathcal{T}_{X}(- \log D)\) is (semi)stable with respect to \(L\) when \(X\) has a Picard rank one or two.
ISSN:2331-8422