Stability of Equivariant Logarithmic Tangent Sheaves on Toric Varieties of Picard Rank Two
For an equivariant log pair \((X, D)\) where \(X\) is a normal toric variety and \(D\) a reduced Weil divisor, we study slope-stability of the logarithmic tangent sheaf \(\mathcal{T}_{X}(- \log D)\). We give a complete description of divisors \(D\) and polarizations \(L\) such that \(\mathcal{T}_{X}...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an equivariant log pair \((X, D)\) where \(X\) is a normal toric variety and \(D\) a reduced Weil divisor, we study slope-stability of the logarithmic tangent sheaf \(\mathcal{T}_{X}(- \log D)\). We give a complete description of divisors \(D\) and polarizations \(L\) such that \(\mathcal{T}_{X}(- \log D)\) is (semi)stable with respect to \(L\) when \(X\) has a Picard rank one or two. |
---|---|
ISSN: | 2331-8422 |