A Variational Inference Approach to Inverse Problems with Gamma Hyperpriors

Hierarchical models with gamma hyperpriors provide a flexible, sparse-promoting framework to bridge \(L^1\) and \(L^2\) regularizations in Bayesian formulations to inverse problems. Despite the Bayesian motivation for these models, existing methodologies are limited to \textit{maximum a posteriori}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Agrawal, Shiv, Kim, Hwanwoo, Sanz-Alonso, Daniel, Strang, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hierarchical models with gamma hyperpriors provide a flexible, sparse-promoting framework to bridge \(L^1\) and \(L^2\) regularizations in Bayesian formulations to inverse problems. Despite the Bayesian motivation for these models, existing methodologies are limited to \textit{maximum a posteriori} estimation. The potential to perform uncertainty quantification has not yet been realized. This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors. The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement. In addition, it lends itself naturally to conduct model selection for the choice of hyperparameters. We illustrate the performance of our methodology in several computed examples, including a deconvolution problem and sparse identification of dynamical systems from time series data.
ISSN:2331-8422