Operator inequalities associated with the Kantrovich type inequalities for \(s\)-convex functions
In this paper, we prove some operator inequalities associated with an extension of the Kantorovich type inequality for \(s\)-convex function. We also give an application to the order preserving power inequality of three variables and find a better lower bound for the numerical radius of a positive o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove some operator inequalities associated with an extension of the Kantorovich type inequality for \(s\)-convex function. We also give an application to the order preserving power inequality of three variables and find a better lower bound for the numerical radius of a positive operator under some conditions. |
---|---|
ISSN: | 2331-8422 |