The Regional Hadley Cells Response to the Sea Surface Temperature Distribution Across the Indo-Pacific Ocean

Hadley Cells are thermally driven cell in the tropics. On its occurrence, these cells are strongly influenced by the sea surface temperature (SST) distribution across the tropical ocean or the Pacific Ocean as the investigated location in this study. The SST shifting in the Pacific Ocean is mainly d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2021-11, Vol.893 (1), p.12008
1. Verfasser: Fatmasari, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hadley Cells are thermally driven cell in the tropics. On its occurrence, these cells are strongly influenced by the sea surface temperature (SST) distribution across the tropical ocean or the Pacific Ocean as the investigated location in this study. The SST shifting in the Pacific Ocean is mainly due to the ENSO. An opposite SST polarity between the western and eastern Pacific Ocean are captured during ENSO events. This means that ENSO could trigger an anomalous regional Hadley Cells that behave oppositely between Indonesia or the western Pacific and the eastern Pacific. This study examines the strength of the regional Hadley Cells related to the ENSO event across the Indonesian region and the Pacific Ocean. A significant correlation between the Hadley Cells and ENSO as the tropical climate variability in the Pacific Oceans are found. The strength of the Hadley Cells associated with ENSO event is examined by using the zonally average vertical velocity across the Pacific Ocean. During La Nina, the regional Hadley Cells over Indonesia or the western Pacific strengthened, whereas the regional cells over the eastern Pacific weakened. In contrast, during El Nino where the warm pool shifted to the eastern Pacific, the regional cell in the eastern Pacific strengthened, while the cell over the western Pacific weakened. These anomalous conditions clearly show that the meridional temperature gradient is strongly affecting the regional Hadley Cells strength. The stronger the meridional temperature gradient, the stronger the regional Hadley Cells.
ISSN:1755-1307
1755-1315
DOI:10.1088/1755-1315/893/1/012008