Measurement and Analysis of Ocean Current using High- Frequency (HF) Radar Observation in the Bali Strait
High-Frequency (HF) Radar is an instrument using radio waves to measure ocean currents and waves remotely. This technology has many advantages, including has unprecedented spatial and temporal resolution, can operate in any weather condition, and is not dangerous for the environment. However, HF Rad...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2021-11, Vol.893 (1), p.12053 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-Frequency (HF) Radar is an instrument using radio waves to measure ocean currents and waves remotely. This technology has many advantages, including has unprecedented spatial and temporal resolution, can operate in any weather condition, and is not dangerous for the environment. However, HF Radar's research is still limited in Indonesia. This research aimed to analyze the tidal and residual current in the Bali Strait in July 2020. Radial velocity from two HF Radar sites is combined to obtain the total currents. Current data from HF Radar were compared with Acoustic Doppler Current Profiler (ADCP) data to investigate its accuracy. Surface current data were analyzed using harmonic analysis to separate tidal and residual currents. Comparison between HF Radar and ADCP data are in good agreement for meridional current with a very high correlation of 0.813 and a small RMSE value of 0.22 m/s. Harmonic analysis shows that the dominant currents are tidal currents. The current direction was northward (southward) at flood (ebb), with maximum northward (southward) velocities are 2.17 m/s (2.97 m/s), respectively. The residual current has a random pattern, slightly faster northward than southward, and has similar spectral with the wind. |
---|---|
ISSN: | 1755-1307 1755-1315 |
DOI: | 10.1088/1755-1315/893/1/012053 |