Research on Online Defect Detection Method of Solar Cell Component Based on Lightweight Convolutional Neural Network
The defects of solar cell component (SCC) will affect the service life and power generation efficiency. In this paper, the defect images of SCC were taken by the photoluminescence (PL) method and processed by an advanced lightweight convolutional neural network (CNN). Firstly, in order to solve the...
Gespeichert in:
Veröffentlicht in: | International Journal of Photoenergy 2021, Vol.2021, p.1-13, Article 7272928 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The defects of solar cell component (SCC) will affect the service life and power generation efficiency. In this paper, the defect images of SCC were taken by the photoluminescence (PL) method and processed by an advanced lightweight convolutional neural network (CNN). Firstly, in order to solve the high pixel SCC image detection, each silicon wafer image was segmented based on local difference extremum of edge projection (LDEEP). Secondly, in order to detect the defects with small size or weak edges in the silicon wafer, an improved lightweight CNN model with deep backbone feature extraction network structure was proposed, as the enhancing feature fusion layer and the three-scale feature prediction layer; the model provided more feature detail. The final experimental results showed that the improved model achieves a good balance between the detection accuracy and detection speed, with the mean average precision (mAP) reaching 87.55%, which was 6.78% higher than the original algorithm. Moreover, the detection speed reached 40 frames per second (fps), which meets requirements of precision and real-time detection. The detection method can better complete the defect detection task of SCC, which lays the foundation for automatic detection of SCC defects. |
---|---|
ISSN: | 1110-662X 1687-529X |
DOI: | 10.1155/2021/7272928 |