Interactive Analysis of CNN Robustness

While convolutional neural networks (CNNs) have found wide adoption as state‐of‐the‐art models for image‐related tasks, their predictions are often highly sensitive to small input perturbations, which the human vision is robust against. This paper presents Perturber, a web‐based application that all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2021-10, Vol.40 (7), p.253-264
Hauptverfasser: Sietzen, Stefan, Lechner, Mathias, Borowski, Judy, Hasani, Ramin, Waldner, Manuela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While convolutional neural networks (CNNs) have found wide adoption as state‐of‐the‐art models for image‐related tasks, their predictions are often highly sensitive to small input perturbations, which the human vision is robust against. This paper presents Perturber, a web‐based application that allows users to instantaneously explore how CNN activations and predictions evolve when a 3D input scene is interactively perturbed. Perturber offers a large variety of scene modifications, such as camera controls, lighting and shading effects, background modifications, object morphing, as well as adversarial attacks, to facilitate the discovery of potential vulnerabilities. Fine‐tuned model versions can be directly compared for qualitative evaluation of their robustness. Case studies with machine learning experts have shown that Perturber helps users to quickly generate hypotheses about model vulnerabilities and to qualitatively compare model behavior. Using quantitative analyses, we could replicate users’ insights with other CNN architectures and input images, yielding new insights about the vulnerability of adversarially trained models.
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14418