A Novel 10 kW Vertical Axis Wind Tree Design: Economic Feasibility Assessment

A novel, small-scale vertical axis wind turbine tree was designed using turbines combining both Darrieus and Savonius blades. We tested for economic viability using wind data collected at a site in Surat Thani, Thailand. The Weibull distribution and Monte Carlo modeling with financial indices (Level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-11, Vol.13 (22), p.12720
Hauptverfasser: Ngoc, Duong Minh, Techato, Kuaanan, Niem, Le Duc, Yen, Nguyen Thi Hai, Dat, Nguyen Van, Luengchavanon, Montri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel, small-scale vertical axis wind turbine tree was designed using turbines combining both Darrieus and Savonius blades. We tested for economic viability using wind data collected at a site in Surat Thani, Thailand. The Weibull distribution and Monte Carlo modeling with financial indices (Levelized Cost of Electricity (LCOE), Net Present Value (NPV), Internal Rate of Return (IRR), and Simple Payback Period (SPP)) were used to analyze data. We found that monthly mean wind speeds varied from 2.35 m/s in October to 2.84 m/s in February, corresponding to a wind power of 28.43 W/m2 and 42.68 W/m2. The average annual power output was 1446.1 kWh for May 2019 to April 2021. Results show that for turbine cut-in to cut-out speeds (2 m/s to 15 m/s), the prototype has potential economic feasibility (NPV > 0 for 64.93%), although the small capacity of the wind tree, in combination with the low average wind speed at the Surat Thani test site, showed a lack of economic viability at this specific location (NPV = USD − 20,946.29). A higher-wind-speed location (Chiang Mai) showed viability, especially at a 10 m height (NPV > 0 for 84.83%). We discuss potential conditions that would make broader use of the prototype feasible.
ISSN:2071-1050
2071-1050
DOI:10.3390/su132212720