Effects of Arctic Warming on Microbes and Methane in Different Land Types in Svalbard
Climate change is having a profound impact on Arctic microbiomes and their living environments. However, we have only incomplete knowledge about the seasonal and inter-annual variations observed among these microbes and about their methane regulation mechanisms with respect to glaciers, glacial melt...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2021-11, Vol.13 (22), p.3296 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Climate change is having a profound impact on Arctic microbiomes and their living environments. However, we have only incomplete knowledge about the seasonal and inter-annual variations observed among these microbes and about their methane regulation mechanisms with respect to glaciers, glacial melting, snow lakes and coastal marine water. This gap in our knowledge limits our understanding of the linkages between climate and environmental change. In the Arctic, there are large reservoirs of methane which are sensitive to temperature changes. If global warming intensifies, larger quantities of methane stored in deep soil and sediments will be released into the atmosphere, causing irreversible effects on the global ecosystem. Methane production is mainly mediated by microorganisms. Although we have some knowledge of microbial community structure, we know less about the methane-correlated microbes in different land types in the Svalbard archipelago, and we do not have a comprehensive grasp of the relationship between them. That is the main reason we have written this paper, in which current knowledge of microorganisms and methane-correlated types in High Arctic Svalbard is described. The problems that need to be addressed in the future are also identified. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w13223296 |