Analytically Solvable Models and Physically Realizable Solutions to Some Problems in Nonlinear Wave Dynamics of Cylindrical Shells

The axially symmetric propagation of bending waves in a thin Timoshenko-type cylindrical shell, interacting with a nonlinear elastic Winkler medium, is herein studied. With the help of asymptotic integration, two analytically solvable models were obtained that have no physically realizable solitary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2021-11, Vol.13 (11), p.2227
Hauptverfasser: Bochkarev, Andrey, Zemlyanukhin, Aleksandr, Erofeev, Vladimir, Ratushny, Aleksandr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The axially symmetric propagation of bending waves in a thin Timoshenko-type cylindrical shell, interacting with a nonlinear elastic Winkler medium, is herein studied. With the help of asymptotic integration, two analytically solvable models were obtained that have no physically realizable solitary wave solutions. The possibility for the real existence of exact solutions, in the form of traveling periodic waves of the nonlinear inhomogeneous Klein–Gordon equation, was established. Two cases were identified, which enabled the development of the modulation instability of periodic traveling waves: (1) a shell preliminarily compressed along a generatrix, surrounded by an elastic medium with hard nonlinearity, and (2) a preliminarily stretched shell interacting with an elastic medium with soft nonlinearity.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym13112227