Shearing Characteristics of Cu-Cu Joints Fabricated by Two-Step Process Using Highly -Oriented Nanotwinned Cu
Cu-Cu bonding has the potential to break through the extreme boundary of scaling down chips’ I/Os into the sub-micrometer scale. In this study, we investigated the effect of 2-step bonding on the shear strength and electrical resistance of Cu-Cu microbumps using highly -oriented nanotwinned Cu (nt-C...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2021-11, Vol.11 (11), p.1864 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cu-Cu bonding has the potential to break through the extreme boundary of scaling down chips’ I/Os into the sub-micrometer scale. In this study, we investigated the effect of 2-step bonding on the shear strength and electrical resistance of Cu-Cu microbumps using highly -oriented nanotwinned Cu (nt-Cu). Alignment and bonding were achieved at 10 s in the first step, and a post-annealing process was further conducted to enhance its bonding strength. Results show that bonding strength was enhanced by 2–3 times after a post-annealing step. We found 50% of ductile fractures among 4548 post-annealed microbumps in one chip, while the rate was less than 20% for the as-bonded counterparts. During the post-annealing, interfacial grain growth and recrystallization occurred, and the bonding interface was eliminated. Ductile fracture in the form of zig-zag grain boundary was found at the original bonding interface, thus resulting in an increase in bonding strength of the microbumps. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met11111864 |