Perturbation-based null hypothesis tests with an application to Clayton models
Null hypothesis tests are popularly used when there is no appropriate alternative hypothesis available, especially in model assessment, where the assumed model is evaluated with no model being considered an alternative. Motivated by a test for Clayton models in multivariate survival analysis, we pro...
Gespeichert in:
Veröffentlicht in: | Canadian journal of statistics 2021-12, Vol.49 (4), p.1136-1151 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1151 |
---|---|
container_issue | 4 |
container_start_page | 1136 |
container_title | Canadian journal of statistics |
container_volume | 49 |
creator | SHU, Di HE, Wenqing |
description | Null hypothesis tests are popularly used when there is no appropriate alternative hypothesis available, especially in model assessment, where the assumed model is evaluated with no model being considered an alternative. Motivated by a test for Clayton models in multivariate survival analysis, we propose a perturbation-based method for null hypothesis testing that makes use of the resampling approach in Jin et al. (Jin et al., Biometrika; 2001; 88, 381–390) to estimate the variance–covariance matrix of an estimator to avoid intractable variance estimation. The proposed tests are straightforward and theoretically justified. We apply the proposed method to modify the tests in Shih (Shih, Biometrika; 1998; 85, 189–200) for the assessment of Clayton models. The proposed tests present satisfactory performance in simulation studies. A colon cancer dataset further illustrates the proposed tests.
Les tests sans contre-hypothèse sont populaires lorsqu’une telle contre-hypothèse n’est pas disponible, notamment pour l’évaluation de modèles sans qu’une option de remplacement ne soit considérée. Motivés par un test pour les modèles de Clayton dans un contexte d’analyse de survie, les auteurs proposent une méthode de test sans contre-hypothèse basée sur les perturbations qui exploite l’approche de rééchantillonnage de Jin et coll. [Biometrika; 2001; 88, 381-390] afin d’estimer la matrice de variance-covariance d’un estimateur tout en évitant de perdre le contrôle sur l’estimation de la variance. Les tests proposés sont directs, et ils sont justifiés par la théorie. Les auteurs exploitent la méthode proposée et modifient les tests de Shih [Biometrika; 1998; 85, 189-200] pour l’évaluation des modèles de Clayton. Ils montrent que leurs tests offrent une performance satisfaisante dans le cadre d’études de simulation et les illustrent à l’aide de données réelles portant sur le cancer du colon. |
doi_str_mv | 10.1002/cjs.11612 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2601861651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48762962</jstor_id><sourcerecordid>48762962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3192-6ff7fcab63fb670cd849050dda72b45d5b0be42c9d239543529ed9134125c91c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI4u_AFCwZWLzuS7zVKKnwwqqOAupEnKtHSamqQM_ffWGXXn6r3FOe9dLgDnCC4QhHipm7BAiCN8AGYog3kqKPs4BDNIkEhZhukxOAmhgZAwhPAMPL1YHwdfqli7Li1VsCbphrZN1mPv4tqGOiTRhhiSbR3XieoS1fdtrXd8El1StGqM07pxxrbhFBxVqg327GfOwfvtzVtxn66e7x6K61Wqpxw45VWVVVqVnFQlz6A2ORWQQWNUhkvKDCthaSnWwmAiGCUMC2sEIhRhpgXSZA4u93d77z6HKZ9s3OC76aXEHKKcI87QRF3tKe1dCN5Wsvf1RvlRIii_65JTXXJX18Qu9-y2bu34PyiLx9df42JvNCE6_2fQPONYcEy-AF6adco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601861651</pqid></control><display><type>article</type><title>Perturbation-based null hypothesis tests with an application to Clayton models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>SHU, Di ; HE, Wenqing</creator><creatorcontrib>SHU, Di ; HE, Wenqing</creatorcontrib><description>Null hypothesis tests are popularly used when there is no appropriate alternative hypothesis available, especially in model assessment, where the assumed model is evaluated with no model being considered an alternative. Motivated by a test for Clayton models in multivariate survival analysis, we propose a perturbation-based method for null hypothesis testing that makes use of the resampling approach in Jin et al. (Jin et al., Biometrika; 2001; 88, 381–390) to estimate the variance–covariance matrix of an estimator to avoid intractable variance estimation. The proposed tests are straightforward and theoretically justified. We apply the proposed method to modify the tests in Shih (Shih, Biometrika; 1998; 85, 189–200) for the assessment of Clayton models. The proposed tests present satisfactory performance in simulation studies. A colon cancer dataset further illustrates the proposed tests.
Les tests sans contre-hypothèse sont populaires lorsqu’une telle contre-hypothèse n’est pas disponible, notamment pour l’évaluation de modèles sans qu’une option de remplacement ne soit considérée. Motivés par un test pour les modèles de Clayton dans un contexte d’analyse de survie, les auteurs proposent une méthode de test sans contre-hypothèse basée sur les perturbations qui exploite l’approche de rééchantillonnage de Jin et coll. [Biometrika; 2001; 88, 381-390] afin d’estimer la matrice de variance-covariance d’un estimateur tout en évitant de perdre le contrôle sur l’estimation de la variance. Les tests proposés sont directs, et ils sont justifiés par la théorie. Les auteurs exploitent la méthode proposée et modifient les tests de Shih [Biometrika; 1998; 85, 189-200] pour l’évaluation des modèles de Clayton. Ils montrent que leurs tests offrent une performance satisfaisante dans le cadre d’études de simulation et les illustrent à l’aide de données réelles portant sur le cancer du colon.</description><identifier>ISSN: 0319-5724</identifier><identifier>EISSN: 1708-945X</identifier><identifier>DOI: 10.1002/cjs.11612</identifier><language>eng</language><publisher>Hoboken, USA: Wiley</publisher><subject>Clayton model ; Colon ; Colon cancer ; copula ; Covariance matrix ; goodness‐of‐fit test ; Hypotheses ; Hypothesis testing ; model misspecification ; Null hypothesis ; Perturbation ; perturbation resampling ; Resampling ; Simulation ; Survival analysis ; Variance</subject><ispartof>Canadian journal of statistics, 2021-12, Vol.49 (4), p.1136-1151</ispartof><rights>2021 Statistical Society of Canada / Société statistique du Canada</rights><rights>2021 Statistical Society of Canada</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3192-6ff7fcab63fb670cd849050dda72b45d5b0be42c9d239543529ed9134125c91c3</citedby><cites>FETCH-LOGICAL-c3192-6ff7fcab63fb670cd849050dda72b45d5b0be42c9d239543529ed9134125c91c3</cites><orcidid>0000-0001-7564-5186 ; 0000-0002-8913-9273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjs.11612$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjs.11612$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>SHU, Di</creatorcontrib><creatorcontrib>HE, Wenqing</creatorcontrib><title>Perturbation-based null hypothesis tests with an application to Clayton models</title><title>Canadian journal of statistics</title><description>Null hypothesis tests are popularly used when there is no appropriate alternative hypothesis available, especially in model assessment, where the assumed model is evaluated with no model being considered an alternative. Motivated by a test for Clayton models in multivariate survival analysis, we propose a perturbation-based method for null hypothesis testing that makes use of the resampling approach in Jin et al. (Jin et al., Biometrika; 2001; 88, 381–390) to estimate the variance–covariance matrix of an estimator to avoid intractable variance estimation. The proposed tests are straightforward and theoretically justified. We apply the proposed method to modify the tests in Shih (Shih, Biometrika; 1998; 85, 189–200) for the assessment of Clayton models. The proposed tests present satisfactory performance in simulation studies. A colon cancer dataset further illustrates the proposed tests.
Les tests sans contre-hypothèse sont populaires lorsqu’une telle contre-hypothèse n’est pas disponible, notamment pour l’évaluation de modèles sans qu’une option de remplacement ne soit considérée. Motivés par un test pour les modèles de Clayton dans un contexte d’analyse de survie, les auteurs proposent une méthode de test sans contre-hypothèse basée sur les perturbations qui exploite l’approche de rééchantillonnage de Jin et coll. [Biometrika; 2001; 88, 381-390] afin d’estimer la matrice de variance-covariance d’un estimateur tout en évitant de perdre le contrôle sur l’estimation de la variance. Les tests proposés sont directs, et ils sont justifiés par la théorie. Les auteurs exploitent la méthode proposée et modifient les tests de Shih [Biometrika; 1998; 85, 189-200] pour l’évaluation des modèles de Clayton. Ils montrent que leurs tests offrent une performance satisfaisante dans le cadre d’études de simulation et les illustrent à l’aide de données réelles portant sur le cancer du colon.</description><subject>Clayton model</subject><subject>Colon</subject><subject>Colon cancer</subject><subject>copula</subject><subject>Covariance matrix</subject><subject>goodness‐of‐fit test</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>model misspecification</subject><subject>Null hypothesis</subject><subject>Perturbation</subject><subject>perturbation resampling</subject><subject>Resampling</subject><subject>Simulation</subject><subject>Survival analysis</subject><subject>Variance</subject><issn>0319-5724</issn><issn>1708-945X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI4u_AFCwZWLzuS7zVKKnwwqqOAupEnKtHSamqQM_ffWGXXn6r3FOe9dLgDnCC4QhHipm7BAiCN8AGYog3kqKPs4BDNIkEhZhukxOAmhgZAwhPAMPL1YHwdfqli7Li1VsCbphrZN1mPv4tqGOiTRhhiSbR3XieoS1fdtrXd8El1StGqM07pxxrbhFBxVqg327GfOwfvtzVtxn66e7x6K61Wqpxw45VWVVVqVnFQlz6A2ORWQQWNUhkvKDCthaSnWwmAiGCUMC2sEIhRhpgXSZA4u93d77z6HKZ9s3OC76aXEHKKcI87QRF3tKe1dCN5Wsvf1RvlRIii_65JTXXJX18Qu9-y2bu34PyiLx9df42JvNCE6_2fQPONYcEy-AF6adco</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>SHU, Di</creator><creator>HE, Wenqing</creator><general>Wiley</general><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>H8D</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7564-5186</orcidid><orcidid>https://orcid.org/0000-0002-8913-9273</orcidid></search><sort><creationdate>20211201</creationdate><title>Perturbation-based null hypothesis tests with an application to Clayton models</title><author>SHU, Di ; HE, Wenqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3192-6ff7fcab63fb670cd849050dda72b45d5b0be42c9d239543529ed9134125c91c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clayton model</topic><topic>Colon</topic><topic>Colon cancer</topic><topic>copula</topic><topic>Covariance matrix</topic><topic>goodness‐of‐fit test</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>model misspecification</topic><topic>Null hypothesis</topic><topic>Perturbation</topic><topic>perturbation resampling</topic><topic>Resampling</topic><topic>Simulation</topic><topic>Survival analysis</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHU, Di</creatorcontrib><creatorcontrib>HE, Wenqing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Aerospace Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Canadian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHU, Di</au><au>HE, Wenqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation-based null hypothesis tests with an application to Clayton models</atitle><jtitle>Canadian journal of statistics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>49</volume><issue>4</issue><spage>1136</spage><epage>1151</epage><pages>1136-1151</pages><issn>0319-5724</issn><eissn>1708-945X</eissn><abstract>Null hypothesis tests are popularly used when there is no appropriate alternative hypothesis available, especially in model assessment, where the assumed model is evaluated with no model being considered an alternative. Motivated by a test for Clayton models in multivariate survival analysis, we propose a perturbation-based method for null hypothesis testing that makes use of the resampling approach in Jin et al. (Jin et al., Biometrika; 2001; 88, 381–390) to estimate the variance–covariance matrix of an estimator to avoid intractable variance estimation. The proposed tests are straightforward and theoretically justified. We apply the proposed method to modify the tests in Shih (Shih, Biometrika; 1998; 85, 189–200) for the assessment of Clayton models. The proposed tests present satisfactory performance in simulation studies. A colon cancer dataset further illustrates the proposed tests.
Les tests sans contre-hypothèse sont populaires lorsqu’une telle contre-hypothèse n’est pas disponible, notamment pour l’évaluation de modèles sans qu’une option de remplacement ne soit considérée. Motivés par un test pour les modèles de Clayton dans un contexte d’analyse de survie, les auteurs proposent une méthode de test sans contre-hypothèse basée sur les perturbations qui exploite l’approche de rééchantillonnage de Jin et coll. [Biometrika; 2001; 88, 381-390] afin d’estimer la matrice de variance-covariance d’un estimateur tout en évitant de perdre le contrôle sur l’estimation de la variance. Les tests proposés sont directs, et ils sont justifiés par la théorie. Les auteurs exploitent la méthode proposée et modifient les tests de Shih [Biometrika; 1998; 85, 189-200] pour l’évaluation des modèles de Clayton. Ils montrent que leurs tests offrent une performance satisfaisante dans le cadre d’études de simulation et les illustrent à l’aide de données réelles portant sur le cancer du colon.</abstract><cop>Hoboken, USA</cop><pub>Wiley</pub><doi>10.1002/cjs.11612</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7564-5186</orcidid><orcidid>https://orcid.org/0000-0002-8913-9273</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0319-5724 |
ispartof | Canadian journal of statistics, 2021-12, Vol.49 (4), p.1136-1151 |
issn | 0319-5724 1708-945X |
language | eng |
recordid | cdi_proquest_journals_2601861651 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Clayton model Colon Colon cancer copula Covariance matrix goodness‐of‐fit test Hypotheses Hypothesis testing model misspecification Null hypothesis Perturbation perturbation resampling Resampling Simulation Survival analysis Variance |
title | Perturbation-based null hypothesis tests with an application to Clayton models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation-based%20null%20hypothesis%20tests%20with%20an%20application%20to%20Clayton%20models&rft.jtitle=Canadian%20journal%20of%20statistics&rft.au=SHU,%20Di&rft.date=2021-12-01&rft.volume=49&rft.issue=4&rft.spage=1136&rft.epage=1151&rft.pages=1136-1151&rft.issn=0319-5724&rft.eissn=1708-945X&rft_id=info:doi/10.1002/cjs.11612&rft_dat=%3Cjstor_proqu%3E48762962%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601861651&rft_id=info:pmid/&rft_jstor_id=48762962&rfr_iscdi=true |