A One-Class Classification Method for Human Gait Authentication Using Micro-Doppler Signatures

In this letter, a radar-based gait authentication method is proposed. We focus on the overfitting problem on the target category caused by limited training data in authentication models and propose a one-class classification model to alleviate this problem. The effectiveness of such model is verifie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2021, Vol.28, p.2182-2186
Hauptverfasser: Ji, Haoran, Hou, Chunping, Yang, Yang, Fioranelli, Francesco, Lang, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, a radar-based gait authentication method is proposed. We focus on the overfitting problem on the target category caused by limited training data in authentication models and propose a one-class classification model to alleviate this problem. The effectiveness of such model is verified by establishing a radar-based gait dataset, which is composed of gait micro-Doppler spectrograms derived from nine human subjects. The experimental results demonstrate that, under the condition of limited training data, the performances of an authentication model degrade because misclassification of the non-target samples easily occurs. The proposed method effectively avoids this risk, performing the other existing authentication and one-class classification methods on the metric Equal Error Rate.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2021.3122344