Discrepancy bounds for distribution of automorphic L-functions
In the present paper, we investigate the discrepancy D σ T ≔ sup ℛ ∣ P T log L σ + i t f ∈ ℛ − P log L σ f X ∈ ℛ ∣ , where the supremum is taken over rectangles ℛ with sides parallel to the coordinate axes. We prove that for 1 / 2 < σ < 1, we have D σ ( T ) ≪ 1 / (log T ) σ ....
Gespeichert in:
Veröffentlicht in: | Lithuanian mathematical journal 2021-10, Vol.61 (4), p.550-563 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we investigate the discrepancy
D
σ
T
≔
sup
ℛ
∣
P
T
log
L
σ
+
i
t
f
∈
ℛ
−
P
log
L
σ
f
X
∈
ℛ
∣
,
where the supremum is taken over rectangles ℛ with sides parallel to the coordinate axes. We prove that for 1
/
2
< σ <
1, we have
D
σ
(
T
) ≪ 1
/
(log
T
)
σ
. |
---|---|
ISSN: | 0363-1672 1573-8825 |
DOI: | 10.1007/s10986-021-09543-8 |