Computable Embeddings for Pairs of Linear Orders

We study computable embeddings for pairs of structures, i.e., for classes containing precisely two nonisomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a nontrivial degree structure. Our main result shows that {ω · k,ω * · k} is computably...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2021-07, Vol.60 (3), p.163-187
Hauptverfasser: Bazhenov, N. A., Ganchev, H., Vatev, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study computable embeddings for pairs of structures, i.e., for classes containing precisely two nonisomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a nontrivial degree structure. Our main result shows that {ω · k,ω * · k} is computably embeddable in {ω · t, ω * · t} iff k divides t.
ISSN:0002-5232
1573-8302
DOI:10.1007/s10469-021-09639-7