Computable Embeddings for Pairs of Linear Orders
We study computable embeddings for pairs of structures, i.e., for classes containing precisely two nonisomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a nontrivial degree structure. Our main result shows that {ω · k,ω * · k} is computably...
Gespeichert in:
Veröffentlicht in: | Algebra and logic 2021-07, Vol.60 (3), p.163-187 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study computable embeddings for pairs of structures, i.e., for classes containing precisely two nonisomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a nontrivial degree structure. Our main result shows that {ω · k,ω
*
· k} is computably embeddable in {ω · t, ω
*
· t} iff k divides t. |
---|---|
ISSN: | 0002-5232 1573-8302 |
DOI: | 10.1007/s10469-021-09639-7 |