Partition identities from higher level crystals of \(A_1^{(1)}\)
We study perfect crystals for the standard modules of the affine Lie algebra \(A_1^{(1)}\) at all levels using the theory of multi-grounded partitions. We prove a family of partition identities which are reminiscent of the Andrews-Gordon identities and companions to the Meurman-Primc identities, but...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study perfect crystals for the standard modules of the affine Lie algebra \(A_1^{(1)}\) at all levels using the theory of multi-grounded partitions. We prove a family of partition identities which are reminiscent of the Andrews-Gordon identities and companions to the Meurman-Primc identities, but with simple difference conditions involving absolute values. We also give simple non-specialised character formulas with obviously positive coefficients for the three level 2 standard modules. |
---|---|
ISSN: | 2331-8422 |