Exact Minimax Estimation for Phase Synchronization
We study the phase synchronization problem with measurements {Y}= {z}^{\ast} {z}^{\ast{\mathrm {H}}}+\sigma {W}\in \mathbb {C}^{n}\times {n} , where {z}^{\ast} is an {n} -dimensional complex unit-modulus vector and {W} is a complex-valued Gaussian random matrix. It is assumed that each entry...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2021-12, Vol.67 (12), p.8236-8247 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the phase synchronization problem with measurements {Y}= {z}^{\ast} {z}^{\ast{\mathrm {H}}}+\sigma {W}\in \mathbb {C}^{n}\times {n} , where {z}^{\ast} is an {n} -dimensional complex unit-modulus vector and {W} is a complex-valued Gaussian random matrix. It is assumed that each entry {Y}_{jk} is observed with probability {p} . We prove that the minimax lower bound of estimating {z}^{\ast} under the squared \ell _{2} loss is (1- {o}(1))\frac {\sigma ^{2}}{2p} . We also show that both generalized power method and maximum likelihood estimator achieve the error bound (1+ {o}(1))\frac {\sigma ^{2}}{2p} . Thus, \frac {\sigma ^{2}}{2p} is the exact asymptotic minimax error of the problem. Our upper bound analysis involves a precise characterization of the statistical property of the power iteration. The lower bound is derived through an application of van Trees' inequality. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2021.3112712 |