Designing a CHAM Block Cipher on Low-End Microcontrollers for Internet of Things

As the technology of Internet of Things (IoT) evolves, abundant data is generated from sensor nodes and exchanged between them. For this reason, efficient encryption is required to keep data in secret. Since low-end IoT devices have limited computation power, it is difficult to operate expensive cip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-09, Vol.9 (9), p.1548
Hauptverfasser: Kwon, Hyeokdong, An, SangWoo, Kim, YoungBeom, Kim, Hyunji, Choi, Seung Ju, Jang, Kyoungbae, Park, Jaehoon, Kim, Hyunjun, Seo, Seog Chung, Seo, Hwajeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the technology of Internet of Things (IoT) evolves, abundant data is generated from sensor nodes and exchanged between them. For this reason, efficient encryption is required to keep data in secret. Since low-end IoT devices have limited computation power, it is difficult to operate expensive ciphers on them. Lightweight block ciphers reduce computation overheads, which are suitable for low-end IoT platforms. In this paper, we implemented the optimized CHAM block cipher in the counter mode of operation, on 8-bit AVR microcontrollers (i.e., representative sensor nodes). There are four new techniques applied. First, the execution time is drastically reduced, by skipping eight rounds through pre-calculation and look-up table access. Second, the encryption with a variable-key scenario is optimized with the on-the-fly table calculation. Third, the encryption in a parallel way makes multiple blocks computed in online for CHAM-64/128 case. Fourth, the state-of-art engineering technique is fully utilized in terms of the instruction level and register level. With these optimization methods, proposed optimized CHAM implementations for counter mode of operation outperformed the state-of-art implementations by 12.8%, 8.9%, and 9.6% for CHAM-64/128, CHAM-128/128, and CHAM-128/256, respectively.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9091548