Chromatic number is Ramsey distinguishing

A graph G is Ramsey for a graph H if every colouring of the edges of G in two colours contains a monochromatic copy of H. Two graphs H 1 and H 2 are Ramsey equivalent if any graph G is Ramsey for H 1 if and only if it is Ramsey for H 2. A graph parameter s is Ramsey distinguishing if s ( H 1 ) ≠ s (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2022-01, Vol.99 (1), p.152-161
1. Verfasser: Savery, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 1
container_start_page 152
container_title Journal of graph theory
container_volume 99
creator Savery, Michael
description A graph G is Ramsey for a graph H if every colouring of the edges of G in two colours contains a monochromatic copy of H. Two graphs H 1 and H 2 are Ramsey equivalent if any graph G is Ramsey for H 1 if and only if it is Ramsey for H 2. A graph parameter s is Ramsey distinguishing if s ( H 1 ) ≠ s ( H 2 ) implies that H 1 and H 2 are not Ramsey equivalent. In this paper we show that the chromatic number is a Ramsey distinguishing parameter. We also extend this to the multicolour case and use a similar idea to find another graph parameter which is Ramsey distinguishing.
doi_str_mv 10.1002/jgt.22731
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599031397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599031397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-add8d90b0a73f534072bbbf92b85783f70f04a2c49f8a6bbba18380671378f593</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4MoWKcHv0HB0w7dXpK2SY5SdCoDQeY5JG2zpaztTFqk337RevX0h_d-__fgh9A9hhUGIOtmP6wIYRRfoAiDYAlgzC9RBDRPEwEkvUY33jcQxhnwCC2Lg-tbNdgy7sZW1y62Pv5Qra-nuLJ-sN1-tP4Q4hZdGXX09d1fLtDn89OueEm275vX4nGblEQwnKiq4pUADYpRk9EUGNFaG0E0zxinhoGBVJEyFYarPKwU5pRDzjBl3GSCLtDDfPfk-q-x9oNs-tF14aUkmRBAMRUsUMuZKl3vvauNPDnbKjdJDPLHhAwm5K-JwK5n9tse6-l_UL5tdnPjDOEnXd8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599031397</pqid></control><display><type>article</type><title>Chromatic number is Ramsey distinguishing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Savery, Michael</creator><creatorcontrib>Savery, Michael</creatorcontrib><description>A graph G is Ramsey for a graph H if every colouring of the edges of G in two colours contains a monochromatic copy of H. Two graphs H 1 and H 2 are Ramsey equivalent if any graph G is Ramsey for H 1 if and only if it is Ramsey for H 2. A graph parameter s is Ramsey distinguishing if s ( H 1 ) ≠ s ( H 2 ) implies that H 1 and H 2 are not Ramsey equivalent. In this paper we show that the chromatic number is a Ramsey distinguishing parameter. We also extend this to the multicolour case and use a similar idea to find another graph parameter which is Ramsey distinguishing.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22731</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>chromatic number ; Coloring ; Equivalence ; Graph theory ; Parameters ; Ramsey distinguishing ; Ramsey equivalence</subject><ispartof>Journal of graph theory, 2022-01, Vol.99 (1), p.152-161</ispartof><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-add8d90b0a73f534072bbbf92b85783f70f04a2c49f8a6bbba18380671378f593</citedby><cites>FETCH-LOGICAL-c2971-add8d90b0a73f534072bbbf92b85783f70f04a2c49f8a6bbba18380671378f593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22731$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22731$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Savery, Michael</creatorcontrib><title>Chromatic number is Ramsey distinguishing</title><title>Journal of graph theory</title><description>A graph G is Ramsey for a graph H if every colouring of the edges of G in two colours contains a monochromatic copy of H. Two graphs H 1 and H 2 are Ramsey equivalent if any graph G is Ramsey for H 1 if and only if it is Ramsey for H 2. A graph parameter s is Ramsey distinguishing if s ( H 1 ) ≠ s ( H 2 ) implies that H 1 and H 2 are not Ramsey equivalent. In this paper we show that the chromatic number is a Ramsey distinguishing parameter. We also extend this to the multicolour case and use a similar idea to find another graph parameter which is Ramsey distinguishing.</description><subject>chromatic number</subject><subject>Coloring</subject><subject>Equivalence</subject><subject>Graph theory</subject><subject>Parameters</subject><subject>Ramsey distinguishing</subject><subject>Ramsey equivalence</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUx4MoWKcHv0HB0w7dXpK2SY5SdCoDQeY5JG2zpaztTFqk337RevX0h_d-__fgh9A9hhUGIOtmP6wIYRRfoAiDYAlgzC9RBDRPEwEkvUY33jcQxhnwCC2Lg-tbNdgy7sZW1y62Pv5Qra-nuLJ-sN1-tP4Q4hZdGXX09d1fLtDn89OueEm275vX4nGblEQwnKiq4pUADYpRk9EUGNFaG0E0zxinhoGBVJEyFYarPKwU5pRDzjBl3GSCLtDDfPfk-q-x9oNs-tF14aUkmRBAMRUsUMuZKl3vvauNPDnbKjdJDPLHhAwm5K-JwK5n9tse6-l_UL5tdnPjDOEnXd8</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Savery, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202201</creationdate><title>Chromatic number is Ramsey distinguishing</title><author>Savery, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-add8d90b0a73f534072bbbf92b85783f70f04a2c49f8a6bbba18380671378f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>chromatic number</topic><topic>Coloring</topic><topic>Equivalence</topic><topic>Graph theory</topic><topic>Parameters</topic><topic>Ramsey distinguishing</topic><topic>Ramsey equivalence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savery, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savery, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatic number is Ramsey distinguishing</atitle><jtitle>Journal of graph theory</jtitle><date>2022-01</date><risdate>2022</risdate><volume>99</volume><issue>1</issue><spage>152</spage><epage>161</epage><pages>152-161</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>A graph G is Ramsey for a graph H if every colouring of the edges of G in two colours contains a monochromatic copy of H. Two graphs H 1 and H 2 are Ramsey equivalent if any graph G is Ramsey for H 1 if and only if it is Ramsey for H 2. A graph parameter s is Ramsey distinguishing if s ( H 1 ) ≠ s ( H 2 ) implies that H 1 and H 2 are not Ramsey equivalent. In this paper we show that the chromatic number is a Ramsey distinguishing parameter. We also extend this to the multicolour case and use a similar idea to find another graph parameter which is Ramsey distinguishing.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22731</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2022-01, Vol.99 (1), p.152-161
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_2599031397
source Wiley Online Library Journals Frontfile Complete
subjects chromatic number
Coloring
Equivalence
Graph theory
Parameters
Ramsey distinguishing
Ramsey equivalence
title Chromatic number is Ramsey distinguishing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatic%20number%20is%20Ramsey%20distinguishing&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Savery,%20Michael&rft.date=2022-01&rft.volume=99&rft.issue=1&rft.spage=152&rft.epage=161&rft.pages=152-161&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22731&rft_dat=%3Cproquest_cross%3E2599031397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599031397&rft_id=info:pmid/&rfr_iscdi=true