Chromatic number is Ramsey distinguishing

A graph G is Ramsey for a graph H if every colouring of the edges of G in two colours contains a monochromatic copy of H. Two graphs H 1 and H 2 are Ramsey equivalent if any graph G is Ramsey for H 1 if and only if it is Ramsey for H 2. A graph parameter s is Ramsey distinguishing if s ( H 1 ) ≠ s (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2022-01, Vol.99 (1), p.152-161
1. Verfasser: Savery, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph G is Ramsey for a graph H if every colouring of the edges of G in two colours contains a monochromatic copy of H. Two graphs H 1 and H 2 are Ramsey equivalent if any graph G is Ramsey for H 1 if and only if it is Ramsey for H 2. A graph parameter s is Ramsey distinguishing if s ( H 1 ) ≠ s ( H 2 ) implies that H 1 and H 2 are not Ramsey equivalent. In this paper we show that the chromatic number is a Ramsey distinguishing parameter. We also extend this to the multicolour case and use a similar idea to find another graph parameter which is Ramsey distinguishing.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.22731