Chromatic number is Ramsey distinguishing
A graph G is Ramsey for a graph H if every colouring of the edges of G in two colours contains a monochromatic copy of H. Two graphs H 1 and H 2 are Ramsey equivalent if any graph G is Ramsey for H 1 if and only if it is Ramsey for H 2. A graph parameter s is Ramsey distinguishing if s ( H 1 ) ≠ s (...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2022-01, Vol.99 (1), p.152-161 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph
G is Ramsey for a graph
H if every colouring of the edges of
G in two colours contains a monochromatic copy of
H. Two graphs
H
1 and
H
2 are Ramsey equivalent if any graph
G is Ramsey for
H
1 if and only if it is Ramsey for
H
2. A graph parameter
s is Ramsey distinguishing if
s
(
H
1
)
≠
s
(
H
2
) implies that
H
1 and
H
2 are not Ramsey equivalent. In this paper we show that the chromatic number is a Ramsey distinguishing parameter. We also extend this to the multicolour case and use a similar idea to find another graph parameter which is Ramsey distinguishing. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22731 |