Determining Sidon Polynomials on Sidon Sets over \(\mathbb{F}_q\times \mathbb{F}_q\)
Let \(p\) be a prime, and \(q=p^n\) be a prime power. In his works on Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\), Cilleruelo conjectured about polynomials that could generate \(q\)-element Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\). Here, we derive some criteria for determining pol...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Afifurrahman, Muhammad Barra, Aleams |
description | Let \(p\) be a prime, and \(q=p^n\) be a prime power. In his works on Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\), Cilleruelo conjectured about polynomials that could generate \(q\)-element Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\). Here, we derive some criteria for determining polynomials that could generate \(q\)-element Sidon set over \(\mathbb{F}_q\times \mathbb{F}_q\). Using these criteria, we prove that certain classes of monomials and cubic polynomials over \(\mathbb{F}_p\) cannot be used to generate \(p\)-element Sidon set over \(\mathbb{F}_p\times \mathbb{F}_p\). We also discover a connection between the needed polynomials and planar polynomials. |
doi_str_mv | 10.48550/arxiv.2111.08886 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2598841354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598841354</sourcerecordid><originalsourceid>FETCH-proquest_journals_25988413543</originalsourceid><addsrcrecordid>eNqNi7sKwjAARYMgWNQPcAu46GDNs8bZB46CjoXSYtSUJrFJFEX8dwu6uDldzrn3AjDAKGaCczTN3V3dYoIxjpEQImmBiFCKJ4IR0gF970uEEElmhHMagf1SBum0Msqc4E4drIFbWz2M1SqvPGzwI3cyNHSTDqajVOfhXBTP9Sur06C09PBHjXugfWzesv_NLhiuV_vFZnJxtr5KH7LSXp1pqozwuRAMU87of6s38fRG5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598841354</pqid></control><display><type>article</type><title>Determining Sidon Polynomials on Sidon Sets over \(\mathbb{F}_q\times \mathbb{F}_q\)</title><source>Ejournal Publishers (free content)</source><creator>Afifurrahman, Muhammad ; Barra, Aleams</creator><creatorcontrib>Afifurrahman, Muhammad ; Barra, Aleams</creatorcontrib><description>Let \(p\) be a prime, and \(q=p^n\) be a prime power. In his works on Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\), Cilleruelo conjectured about polynomials that could generate \(q\)-element Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\). Here, we derive some criteria for determining polynomials that could generate \(q\)-element Sidon set over \(\mathbb{F}_q\times \mathbb{F}_q\). Using these criteria, we prove that certain classes of monomials and cubic polynomials over \(\mathbb{F}_p\) cannot be used to generate \(p\)-element Sidon set over \(\mathbb{F}_p\times \mathbb{F}_p\). We also discover a connection between the needed polynomials and planar polynomials.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2111.08886</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alliances ; Criteria ; Polynomials</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Afifurrahman, Muhammad</creatorcontrib><creatorcontrib>Barra, Aleams</creatorcontrib><title>Determining Sidon Polynomials on Sidon Sets over \(\mathbb{F}_q\times \mathbb{F}_q\)</title><title>arXiv.org</title><description>Let \(p\) be a prime, and \(q=p^n\) be a prime power. In his works on Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\), Cilleruelo conjectured about polynomials that could generate \(q\)-element Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\). Here, we derive some criteria for determining polynomials that could generate \(q\)-element Sidon set over \(\mathbb{F}_q\times \mathbb{F}_q\). Using these criteria, we prove that certain classes of monomials and cubic polynomials over \(\mathbb{F}_p\) cannot be used to generate \(p\)-element Sidon set over \(\mathbb{F}_p\times \mathbb{F}_p\). We also discover a connection between the needed polynomials and planar polynomials.</description><subject>Alliances</subject><subject>Criteria</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7sKwjAARYMgWNQPcAu46GDNs8bZB46CjoXSYtSUJrFJFEX8dwu6uDldzrn3AjDAKGaCczTN3V3dYoIxjpEQImmBiFCKJ4IR0gF970uEEElmhHMagf1SBum0Msqc4E4drIFbWz2M1SqvPGzwI3cyNHSTDqajVOfhXBTP9Sur06C09PBHjXugfWzesv_NLhiuV_vFZnJxtr5KH7LSXp1pqozwuRAMU87of6s38fRG5w</recordid><startdate>20230617</startdate><enddate>20230617</enddate><creator>Afifurrahman, Muhammad</creator><creator>Barra, Aleams</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230617</creationdate><title>Determining Sidon Polynomials on Sidon Sets over \(\mathbb{F}_q\times \mathbb{F}_q\)</title><author>Afifurrahman, Muhammad ; Barra, Aleams</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25988413543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alliances</topic><topic>Criteria</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Afifurrahman, Muhammad</creatorcontrib><creatorcontrib>Barra, Aleams</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afifurrahman, Muhammad</au><au>Barra, Aleams</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Determining Sidon Polynomials on Sidon Sets over \(\mathbb{F}_q\times \mathbb{F}_q\)</atitle><jtitle>arXiv.org</jtitle><date>2023-06-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Let \(p\) be a prime, and \(q=p^n\) be a prime power. In his works on Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\), Cilleruelo conjectured about polynomials that could generate \(q\)-element Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\). Here, we derive some criteria for determining polynomials that could generate \(q\)-element Sidon set over \(\mathbb{F}_q\times \mathbb{F}_q\). Using these criteria, we prove that certain classes of monomials and cubic polynomials over \(\mathbb{F}_p\) cannot be used to generate \(p\)-element Sidon set over \(\mathbb{F}_p\times \mathbb{F}_p\). We also discover a connection between the needed polynomials and planar polynomials.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2111.08886</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2598841354 |
source | Ejournal Publishers (free content) |
subjects | Alliances Criteria Polynomials |
title | Determining Sidon Polynomials on Sidon Sets over \(\mathbb{F}_q\times \mathbb{F}_q\) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Determining%20Sidon%20Polynomials%20on%20Sidon%20Sets%20over%20%5C(%5Cmathbb%7BF%7D_q%5Ctimes%20%5Cmathbb%7BF%7D_q%5C)&rft.jtitle=arXiv.org&rft.au=Afifurrahman,%20Muhammad&rft.date=2023-06-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2111.08886&rft_dat=%3Cproquest%3E2598841354%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598841354&rft_id=info:pmid/&rfr_iscdi=true |