Determining Sidon Polynomials on Sidon Sets over \(\mathbb{F}_q\times \mathbb{F}_q\)
Let \(p\) be a prime, and \(q=p^n\) be a prime power. In his works on Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\), Cilleruelo conjectured about polynomials that could generate \(q\)-element Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\). Here, we derive some criteria for determining pol...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(p\) be a prime, and \(q=p^n\) be a prime power. In his works on Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\), Cilleruelo conjectured about polynomials that could generate \(q\)-element Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\). Here, we derive some criteria for determining polynomials that could generate \(q\)-element Sidon set over \(\mathbb{F}_q\times \mathbb{F}_q\). Using these criteria, we prove that certain classes of monomials and cubic polynomials over \(\mathbb{F}_p\) cannot be used to generate \(p\)-element Sidon set over \(\mathbb{F}_p\times \mathbb{F}_p\). We also discover a connection between the needed polynomials and planar polynomials. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2111.08886 |