Determining Sidon Polynomials on Sidon Sets over \(\mathbb{F}_q\times \mathbb{F}_q\)

Let \(p\) be a prime, and \(q=p^n\) be a prime power. In his works on Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\), Cilleruelo conjectured about polynomials that could generate \(q\)-element Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\). Here, we derive some criteria for determining pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Afifurrahman, Muhammad, Barra, Aleams
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(p\) be a prime, and \(q=p^n\) be a prime power. In his works on Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\), Cilleruelo conjectured about polynomials that could generate \(q\)-element Sidon sets over \(\mathbb{F}_q\times \mathbb{F}_q\). Here, we derive some criteria for determining polynomials that could generate \(q\)-element Sidon set over \(\mathbb{F}_q\times \mathbb{F}_q\). Using these criteria, we prove that certain classes of monomials and cubic polynomials over \(\mathbb{F}_p\) cannot be used to generate \(p\)-element Sidon set over \(\mathbb{F}_p\times \mathbb{F}_p\). We also discover a connection between the needed polynomials and planar polynomials.
ISSN:2331-8422
DOI:10.48550/arxiv.2111.08886