Algebras whose units satisfy a ∗-Laurent polynomial identity

Let R be an algebraic algebra over an infinite field and ∗ be an involution on R . We show that if the units of R , U ( R ) , satisfy a ∗ -Laurent polynomial identity, then R satisfies a polynomial identity. Also, let G be a torsion group and F a field. As a generalization of Hartley’s Conjecture, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2021-12, Vol.117 (6), p.617-630
Hauptverfasser: Ramezan-Nassab, M., Bien, M. H., Akbari-Sehat, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be an algebraic algebra over an infinite field and ∗ be an involution on R . We show that if the units of R , U ( R ) , satisfy a ∗ -Laurent polynomial identity, then R satisfies a polynomial identity. Also, let G be a torsion group and F a field. As a generalization of Hartley’s Conjecture, in Broche et al. (Arch Math 111:353–367, 2018), it is shown that if U ( F G ) satisfies a Laurent polynomial identity which is not satisfied by the units of the relative free algebra F [ α , β : α 2 = β 2 = 0 ] , then FG satisfies a polynomial identity. In this paper, we instead consider non-torsion groups G and provide some necessary conditions for U ( F G ) to satisfy a Laurent polynomial identity.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-021-01671-4