Algebras whose units satisfy a ∗-Laurent polynomial identity
Let R be an algebraic algebra over an infinite field and ∗ be an involution on R . We show that if the units of R , U ( R ) , satisfy a ∗ -Laurent polynomial identity, then R satisfies a polynomial identity. Also, let G be a torsion group and F a field. As a generalization of Hartley’s Conjecture, i...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2021-12, Vol.117 (6), p.617-630 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R
be an algebraic algebra over an infinite field and
∗
be an involution on
R
. We show that if the units of
R
,
U
(
R
)
, satisfy a
∗
-Laurent polynomial identity, then
R
satisfies a polynomial identity. Also, let
G
be a torsion group and
F
a field. As a generalization of Hartley’s Conjecture, in Broche et al. (Arch Math 111:353–367, 2018), it is shown that if
U
(
F
G
)
satisfies a Laurent polynomial identity which is not satisfied by the units of the relative free algebra
F
[
α
,
β
:
α
2
=
β
2
=
0
]
, then
FG
satisfies a polynomial identity. In this paper, we instead consider non-torsion groups
G
and provide some necessary conditions for
U
(
F
G
)
to satisfy a Laurent polynomial identity. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-021-01671-4 |