Generalized commutative quaternions of the Fibonacci type

Quaternions are a four-dimensional hypercomplex number system discovered by Hamilton in 1843 and next intensively applied in mathematics, modern physics, computer graphics and other fields. After the discovery of quaternions, modified quaternions were also defined in such a way that commutative prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletín de la Sociedad Matemática Mexicana 2022-03, Vol.28 (1), Article 1
Hauptverfasser: Szynal-Liana, Anetta, Włoch, Iwona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quaternions are a four-dimensional hypercomplex number system discovered by Hamilton in 1843 and next intensively applied in mathematics, modern physics, computer graphics and other fields. After the discovery of quaternions, modified quaternions were also defined in such a way that commutative property in multiplication is possible. That number system called as commutative quaternions is intensively studied and used for example in signal processing. In this paper we define generalized commutative quaternions and next based on them we define and explore Fibonacci type generalized commutative quaternions.
ISSN:1405-213X
2296-4495
DOI:10.1007/s40590-021-00386-4