Divisibility results for zero-cycles
Let X be a product of smooth projective curves over a finite unramified extension k of Q p . Suppose that the Albanese variety of X has good reduction and that X has a k -rational point. We propose the following conjecture. The kernel of the Albanese map C H 0 ( X ) 0 → Alb X ( k ) is p -divisible....
Gespeichert in:
Veröffentlicht in: | European journal of mathematics 2021-12, Vol.7 (4), p.1458-1501 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a product of smooth projective curves over a finite unramified extension
k
of
Q
p
. Suppose that the Albanese variety of
X
has good reduction and that
X
has a
k
-rational point. We propose the following conjecture. The kernel of the Albanese map
C
H
0
(
X
)
0
→
Alb
X
(
k
)
is
p
-divisible. When
p
is an odd prime, we prove this conjecture for a large family of products of elliptic curves and certain principal homogeneous spaces of abelian varieties. Using this, we provide some evidence for a local-to-global conjecture for zero-cycles of Colliot-Thélène and Sansuc (Duke Math J 48(2):421–447, 1981), and Kato and Saito (Contemporary Mathematics, vol. 55:255–331, 1986). |
---|---|
ISSN: | 2199-675X 2199-6768 |
DOI: | 10.1007/s40879-021-00471-y |