Divisibility results for zero-cycles

Let X be a product of smooth projective curves over a finite unramified extension k of Q p . Suppose that the Albanese variety of X has good reduction and that X has a k -rational point. We propose the following conjecture. The kernel of the Albanese map C H 0 ( X ) 0 → Alb X ( k ) is p -divisible....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mathematics 2021-12, Vol.7 (4), p.1458-1501
Hauptverfasser: Gazaki, Evangelia, Hiranouchi, Toshiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a product of smooth projective curves over a finite unramified extension k of Q p . Suppose that the Albanese variety of X has good reduction and that X has a k -rational point. We propose the following conjecture. The kernel of the Albanese map C H 0 ( X ) 0 → Alb X ( k ) is p -divisible. When p is an odd prime, we prove this conjecture for a large family of products of elliptic curves and certain principal homogeneous spaces of abelian varieties. Using this, we provide some evidence for a local-to-global conjecture for zero-cycles of Colliot-Thélène and Sansuc (Duke Math J 48(2):421–447, 1981), and Kato and Saito (Contemporary Mathematics, vol. 55:255–331, 1986).
ISSN:2199-675X
2199-6768
DOI:10.1007/s40879-021-00471-y