Practical Scheduling for Real-World Serverless Computing
Serverless computing has seen rapid growth due to the ease-of-use and cost-efficiency it provides. However, function scheduling, a critical component of serverless systems, has been overlooked. In this paper, we take a first-principles approach toward designing a scheduler that caters to the unique...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Serverless computing has seen rapid growth due to the ease-of-use and cost-efficiency it provides. However, function scheduling, a critical component of serverless systems, has been overlooked. In this paper, we take a first-principles approach toward designing a scheduler that caters to the unique characteristics of serverless functions as seen in real-world deployments. We first create a taxonomy of scheduling policies along three dimensions. Next, we use simulation to explore the scheduling policy space for the function characteristics in a 14-day trace of Azure functions and conclude that frequently used features such as late binding and random load balancing are sub-optimal for common execution time distributions and load ranges. We use these insights to design Hermes, a scheduler for serverless functions with three key characteristics. First, to avoid head-of-line blocking due to high function execution time variability, Hermes uses a combination of early binding and processor sharing for scheduling at individual worker machines. Second, Hermes uses a hybrid load balancing approach that improves consolidation at low load while employing least-loaded balancing at high load to retain high performance. Third, Hermes is both load and locality-aware, reducing the number of cold starts compared to pure load-based policies. We implement Hermes for Apache OpenWhisk and demonstrate that, for the case of the function patterns observed both in the Azure and in other real-world traces, it achieves up to 85% lower function slowdown and 60% higher throughput compared to existing policies. |
---|---|
ISSN: | 2331-8422 |