A strain-driven thermotropic phase boundary in BaTiO3 at room temperature by cycling compression

In BaTiO3 single crystals, we observed a strain-driven phase transition from the tetragonal phase to the tetragonal-orthorhombic phase boundary which can be introduced by slow cycling compressions (a loading of up to 0.5 GPa, strain rate of 10−4 s−1, and 100 cycles) at room temperature. Different fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2021-11, Vol.11 (11), p.115122-115122-5
Hauptverfasser: Ren, Yifeng, Li, Jiayi, Zhao, Yunlei, Ciston, Jim, Bustillo, Karen, Zhang, Ruopeng, Dong, Hongliang, Chen, Zhiqiang, Minor, Andrew M., Deng, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In BaTiO3 single crystals, we observed a strain-driven phase transition from the tetragonal phase to the tetragonal-orthorhombic phase boundary which can be introduced by slow cycling compressions (a loading of up to 0.5 GPa, strain rate of 10−4 s−1, and 100 cycles) at room temperature. Different from the well-known tetragonal to cubic phase transition under stress (∼2 GPa), it only takes place locally around bent 90° domain walls. The inhomogeneous local stress and electrical fields as well as the mobile point defect pinning effect contribute to the phase re-entrance. Through comparison experiments by in situ synchrotron x-ray diffraction, Raman scattering, and (scanning) transmission electron microscopy, we explored the phase transition mechanism. Based on that, we developed a mechanical method to obtain well-stabilized high-density thermotropic phase boundary structures (with tetragonal, orthorhombic, and bridging monoclinic phases) in BaTiO3 for potential applications.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0066660