A strain-driven thermotropic phase boundary in BaTiO3 at room temperature by cycling compression
In BaTiO3 single crystals, we observed a strain-driven phase transition from the tetragonal phase to the tetragonal-orthorhombic phase boundary which can be introduced by slow cycling compressions (a loading of up to 0.5 GPa, strain rate of 10−4 s−1, and 100 cycles) at room temperature. Different fr...
Gespeichert in:
Veröffentlicht in: | AIP advances 2021-11, Vol.11 (11), p.115122-115122-5 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In BaTiO3 single crystals, we observed a strain-driven phase transition from the tetragonal phase to the tetragonal-orthorhombic phase boundary which can be introduced by slow cycling compressions (a loading of up to 0.5 GPa, strain rate of 10−4 s−1, and 100 cycles) at room temperature. Different from the well-known tetragonal to cubic phase transition under stress (∼2 GPa), it only takes place locally around bent 90° domain walls. The inhomogeneous local stress and electrical fields as well as the mobile point defect pinning effect contribute to the phase re-entrance. Through comparison experiments by in situ synchrotron x-ray diffraction, Raman scattering, and (scanning) transmission electron microscopy, we explored the phase transition mechanism. Based on that, we developed a mechanical method to obtain well-stabilized high-density thermotropic phase boundary structures (with tetragonal, orthorhombic, and bridging monoclinic phases) in BaTiO3 for potential applications. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/5.0066660 |