Sulfur Isotope Composition of Olivine Gabbronorites from a Mineralized Apophysis of the Yoko-Dovyren Intrusion, Northern Transbaikalia, Russia
High-precision analysis of sulfur isotope composition was carried out for sulfide fractions from ten samples of olivine gabbronorite that composes a thick (approximately 300 m) swell of a ore-bearing apophysis that is parallel to the basal part of the Yoko-Dovyren massif in northern Baikal area, Rus...
Gespeichert in:
Veröffentlicht in: | Petrology 2021-11, Vol.29 (6), p.597-613 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-precision analysis of sulfur isotope composition was carried out for sulfide fractions from ten samples of olivine gabbronorite that composes a thick (approximately 300 m) swell of a ore-bearing apophysis that is parallel to the basal part of the Yoko-Dovyren massif in northern Baikal area, Russia. The δ
34
S values were found out to widely vary from +11‰ to –1.9‰. The maximum enrichment in isotopically heavy sulfur was identified within the basal horizon, which is 10 m thick, whereas the minimum values of δ
34
S were observed near the upper contact of the intrusive body. Sulfide droplets in chilled picrodolerite from the lower contact zone (Pshenitsyn et al., 2020) show a narrow range of δ
34
S (+8.65 ± 0.34‰,
n
= 5). Lower values of δ
34
S ranging from +2.09 to +2.53‰ are characteristic of the sulfide-rich net-textured ores, the mineralized olivine gabbronorite, and a cutting leucogabbro dike. The sulfur isotope compositions of two samples of pyrite-bearing rocks from the host carbonate–terrigenous rocks display discrete values of δ
34
S = +2.20‰ and δ
34
S = +9.40 ± 0.14‰ at a whole-rock sulfur concentration up to 3.5 wt %. Simple scenarios of the additive mixing of isotope-contrasting reservoirs corresponding to a juvenile magmatic source (δ
34
S = 0 and +2‰) and a provisionally chosen contaminant (δ
34
S = +9.4‰) are demonstrated to require a high degree of assimilation of host rocks (as much as 60–80%) and complete isotope equilibration of the hybrid system. In the contact picrodolerite with rare globular sulfides, the mixing mechanism is inconsistent with the estimated sulfur solubility in its parental magma: approximately 0.08 wt % (Ariskin et al., 2016). The high δ
34
S values in rocks from the basal part of the apophysis may be explained, under the assumption that contact-metamorphic H
2
S-bearing fluid was introduced into the magmatic system, by the thermal decomposition of pyrite coupled with dehydration of the host rocks. The proposed mechanism does not require a volume assimilation of crustal materials and is consistent with petrological and geochemical characteristics of the Dovyren magmas and derivative cumulates. |
---|---|
ISSN: | 0869-5911 1556-2085 |
DOI: | 10.1134/S0869591121060023 |