Microstructure and mineral components of the outer dentin of Chimaera phantasma tooth plates

Tooth plates are a unique dental organ found in holocephalan fishes and lungfish. The chimaeroid tooth plates are atypical in terms of biomineralization, due to the hard tissue composition of whitlockite and apatite, while those of lungfish and other vertebrates are composed of apatite. The tooth pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anatomical record (Hoboken, N.J. : 2007) N.J. : 2007), 2021-12, Vol.304 (12), p.2865-2878
Hauptverfasser: Iijima, Mayumi, Okumura, Taiga, Kogure, Toshihiro, Suzuki, Michio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tooth plates are a unique dental organ found in holocephalan fishes and lungfish. The chimaeroid tooth plates are atypical in terms of biomineralization, due to the hard tissue composition of whitlockite and apatite, while those of lungfish and other vertebrates are composed of apatite. The tooth plates are overlaid by a thin veneer—outer dentin—whose composition and role are not known. We aimed to test whether the outer dentin is composed of whitlockite or apatite, and whether it protects the osteodentin from abrasion and supports its overall strength. For this purpose, the mineral components and microstructure of outer dentin were studied. Our analyses of the outer dentin from the anterior (vomerine) tooth plates of Chimaera phantasma revealed that the mineral component is magnesium‐ and carbonate‐containing calcium‐deficient apatite and that the outer dentin has a three‐zone structure. The main body is sandwiched between thin zones, which are less mineralized than the main body. Furthermore, in the outer zone and the main body, a higher‐order structure was formed in accordance with the organization of wide and narrow fibers. Mineralization made the main body a composite of bundles of fibers and apatite. Transmission electron microscopy showed a structural relationship between apatite and the fibrous component on which the apatite was formed. Such a structure of the main body could be highly effective as a framework to resist abrasion and support the overall strength of the tooth plate.
ISSN:1932-8486
1932-8494
DOI:10.1002/ar.24606