A type of shadowing and distributional chaos
For any continuous self-map of a compact metric space, we prove a saturation of distributionally scrambled Mycielski sets under a type of shadowing and the chain transitivity. This extends a result of J. Li, J. Li, and S. Tu, Devaney chaos plus shadowing implies distributional chaos, Chaos 26 (2016)...
Gespeichert in:
Veröffentlicht in: | Dynamical systems (London, England) England), 2021-10, Vol.36 (4), p.572-585 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any continuous self-map of a compact metric space, we prove a saturation of distributionally scrambled Mycielski sets under a type of shadowing and the chain transitivity. This extends a result of J. Li, J. Li, and S. Tu, Devaney chaos plus shadowing implies distributional chaos, Chaos 26 (2016), 093103, 6 pp. |
---|---|
ISSN: | 1468-9367 1468-9375 |
DOI: | 10.1080/14689367.2021.1957083 |